Interoperability in a Distributed, Heterogeneous Data Environment: The OPeNDAP Example

> Peter Cornillon Graduate School of Oceanography University of Rhode Island

> > **Presented at CODATA**

2 October 2002

Outline

> OPeNDAP: What is it?

> Interoperability

- Metadata
- Format vs Structure

OPeNDAP: Status

DODS OPeNDAP

Distributed Oceanographic Data System (DODS)

Conceived in 1992 at a workshop held at URI.

> Objectives were:

- to facilitate access to PI held data as well as data held in national archives and
- to allow the data user to analyze data using the application package with which he or she is the most familiar.
- Basic system designed and implemented in 1993-1994 by Gallagher and Flierl

Distributed Oceanographic Data System

DODS consisted of two fundamental parts:

- a discipline independent core infrastructure for moving data on the net,
- a discipline specific portion related to data data population, data location, specialized clients, etc.

DODS ⇒ OPeNDAP & NVODS

To isolate the discipline independent part of the system from the discipline specific part, two entities have been formed:

Open Source Project for a Network Data Access Protocol (OPeNDAP)

National Virtual Ocean Data System (NVODS)

OPeNDAP

- OPeNDAP was formed to maintain and evolve the DODS core infrastructure.
- > OPeNDAP is a non-profit corporation
- OPeNDAP focuses on the discipline neutral parts of the DODS data access protocol

Objective of OPeNDAP

To provide a data access protocol allowing for machine-to-machine interoperability with semantic meaning

The scripted exchange of data between computers, without human intervention.

Interoperability

The degree to which machine-to-machine interoperability is achieved depends on the metadata associated with the data.

> Metadata is information about the data.

We divide metadata into two basic classes
Syntactic metadata
Semantic metadata

Syntactic Metadata

- Information about the data types and structures at the computer level the syntax of the data;
 - e.g., variable T represents a 20x40 element floating point array.
- Required as part of the transport protocol for data in a network based data system.
- The transport protocol is characterized by a (syntactic) data model

Syntactic Data Model

- The organizational description of data as they are moved between elements with in the system.
 - generally consists of data types, and
 - groupings of these data types

 Also includes operations that may be performed on the data – e.g., subsetting

Semantic Metadata

> Information about the contents of the data set.

- e.g., variable T represents
 - sea surface temperature
 - with units of °C
 - collected by so-and-so and
 - extends from 40°W to 30°W and 10°N to 30°N

Syntactic vs Semantic Metadata

Syntactic metadata are easily constrained.

Semantic metadata are not.
they depend on the use that is to be made of them

Semantic Metadata Types

> We define two classes of semantic metadata

 Search metadata – used to locate data sets of interest in a distributed data system.

• Use metadata –needed to actually use the data.

Semantic Search Metadata Types

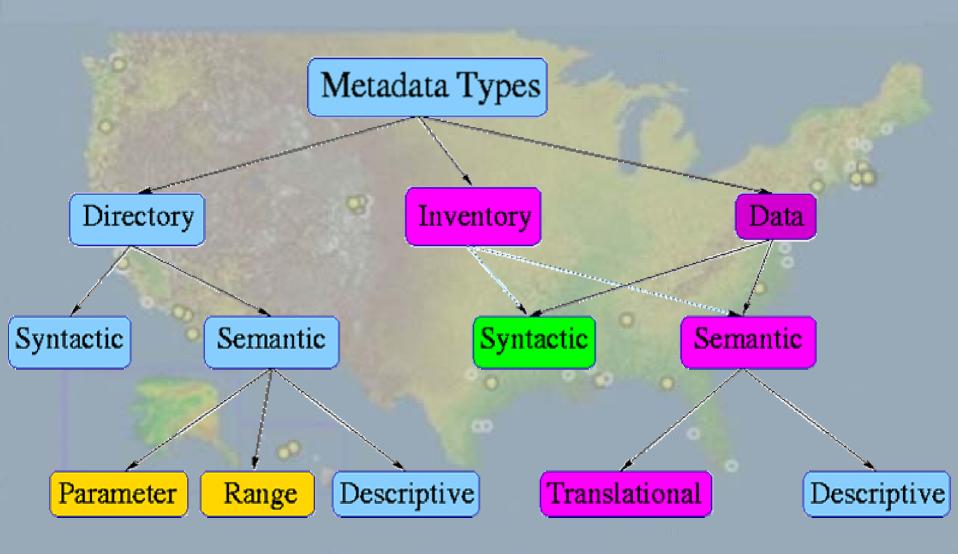
> We define three search metadata categories Parameter – variables in the data set Range – the range of values, lat, lon,... Descriptive – additional information not generally required for a search such as: o Ship from which the data were collected o Campaign o PI

Semantic Use Metadata Types

Two basic classes of use metadata – needed to make use of the data.

 Translational Use Metadata – needed to assign geophysical meaning to the data

 Descriptive Use Metadata – needed to understand how the data were generated


Translational Use Metadata

- Metadata needed to make use of the data; e.g., to properly label a plot of the data.
 - Variable names in the data set; e.g., SST
 - Units of the data.
 - Missing value flags.

Descriptive Use Metadata

- Metadata needed to understand how the data were generated
 - Algorithm used to generate the data
 - Calibration of instruments
 - Data quality

OPeNDAP and Metadata

Interoperability

Interoperability may be defined at any one of a number of levels ranging from:

> the lowest (hardware) - how computers are linked electronically, to

the highest – semantically meaningful, machine-to-machine exchanges (Level 3 Interoperability).

Layers of Interoperability

Clients

Metadata - Provides semantic meaning

Semantic Structure – more consistent

Structure – maps data to a consistent structure

Format – Map data from source to application

Host-to-host - Sequences and acknowledges transmissions

TCP/IP

Internet – Data routing over the network

Network Access – Physical connections, data packaging for transmission Machine-to-machine Interoperability with semantic meaning.

OPeNDAP

Organizational Complexity

Example: Consider the different ways of organizing a multi-year data set consisting of one global sea surface temperature (SST) field per day:

> one 2-d file per day sst(lat,lon) - URI

> one 3-d file sst(lon,lat,time) - PMEL

> one file per year with one variable per day ⇒365 variables per file, n files for n year - GSFC

STRUCTURE LEVEL

- Provide the capability to reorganize data so that they are in a syntactically consistent structural form.
- Generally designed to reduce the granularity of the data set
- Example: one 3-d file sst(lon,lat,time)

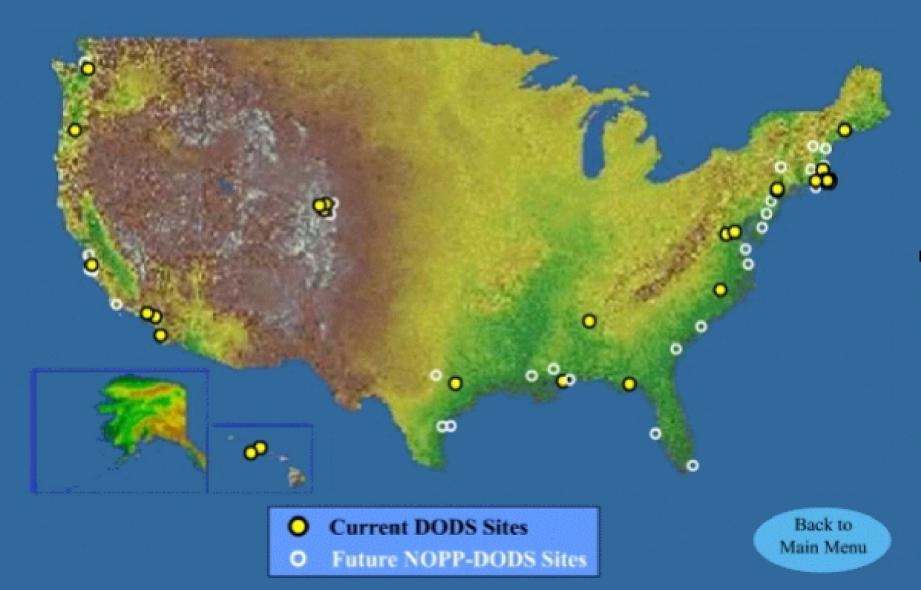
SEMANTIC STRUCTURE LEVEL

- Provide the capability to reorganize data so that they are in a semantically consistent structural form.
- Example: one 4-d file sst(lon,lat,depth,time), depth being a null dimension.

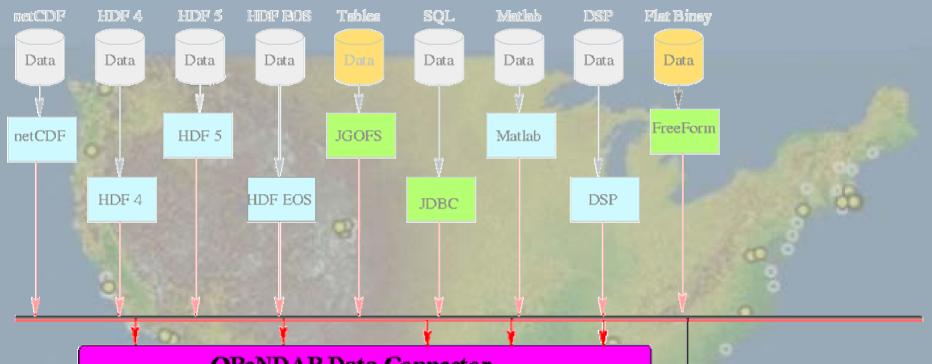
Aggregation Server

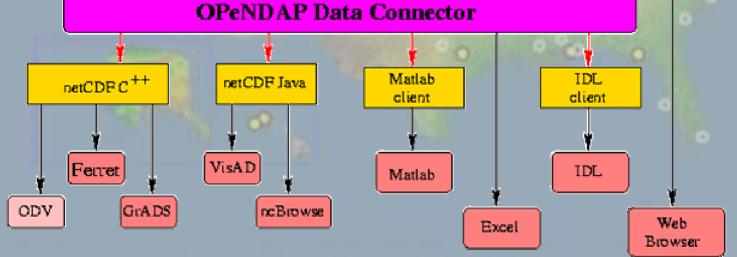
Developed by John Caron of Unidata with input from CDC, PMEL, URI and OPeNDAP

Is for the aggregation of grids and arrays only

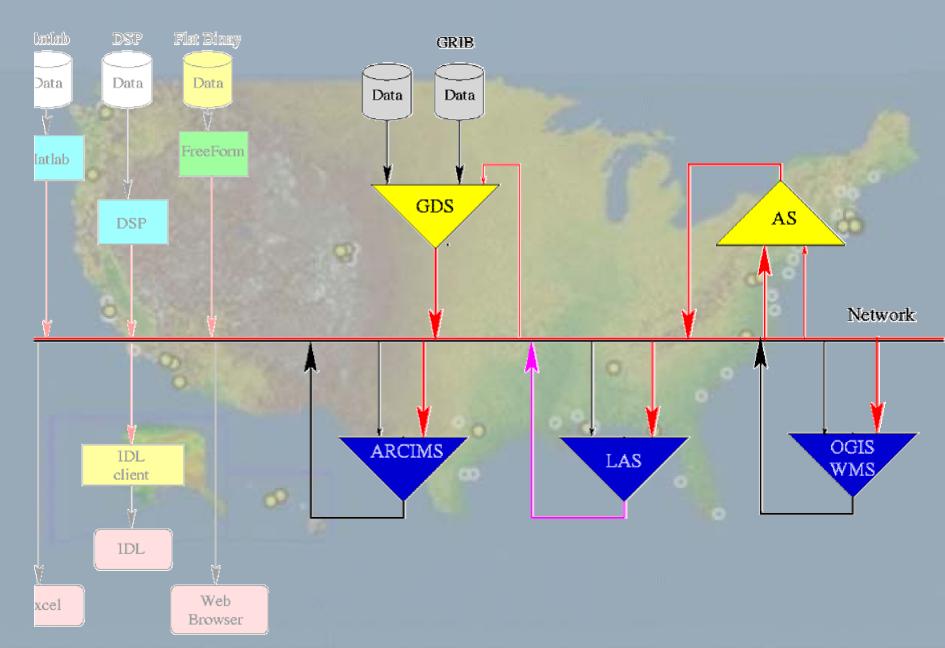

Operates at the syntactic level

Handles three types of aggregation





OPeNDAP/NVODS Server Sites



OPeNDAP² Client and Server Status

Special Servers

Projects Using OPeNDAP²

GODAE (Global Ocean Data Assimilation Experiment)

NOMADS (NOAA Operational Model Archive and Distribution System)

> AOIMPS

ESG II - Earth System Grid II

Ocean. US (US-GOOS)

High Altitude Observatory Community

Institutions Making Heavy use of OPeNDAP²

Ingrid - Columbia University

COLA - Center for Ocean-Land-Atmosphere

Goddard DAAC

CDC - Climate Diagnostic Center
PMEL - Pacific Marine Environment Lab

NVODS Monthly Accesses (2002)

Site	April	May	June	July	August
URI	4,856	19,504	3,691	26,693	7,440
LDEO	80,709	62,930	46,092	93,088	00
CDC	102,518	153,362	62,395	181,974	107,512
JPL			73,516		
MBARI	× 0	a	3607	•	
TOTAL	188,083	235,796	189,301	301,755	114,952

NVODS Unique Users (2002)

Site	April	May	June	July	August
URI	73	68	72	44	69
LDEO		8		0	00
CDC	124	105	91	116	111
JPL		Alle of	• • • •	20 °	
MBARI	8			•	

Interesting Statistics OPeNDAP2 Access

• IRI data accesses for 1st quarter of 2002

Туре	Requests	%	Volume (gb)	%
DODS	191,611	8.5	375.2	69.4
Other	2,062,681	91.5	165.2	30.6
Total	2,254,292	100.0	540.4	100.0

•PMEL OPeNDAP² ~ 35,000 with ~26,000 internal.

Conclusions

> OPeNDAP

- Is not a data system.
- Provides a base on which one can build a data system.
- The focus on syntactic data has lead to the rapid installation of OPeNDAP-enabled servers.
- Is discipline neutral
- Has been adopted in several disciplines as a data system core