

From Discovery to Innovation...

# The Virtual Observatory: The Future of Astrophysics Data Handling

### **David Schade**

NRC · CNRC

Canadian Astronomy Data Centre Herzberg Institute for Astrophysics National Research Council Canada

With support from the Canadian Space Agency









# Astronomy and Astrophysics

Does fairly well in information technology

- Has excellent online literature services
  - ADS Abstracts
  - Journals
  - Preprints
- Has a good history of data archiving
- Has reasonable data access policies
- BUT
  - As a scientist it is frustrating and time-consuming to locate suitable data and data quality is often sub-standard



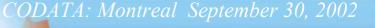
A Brief History of Data Archiving in Astronomy

# **History**

- NASA has been a driving force in data archiving for astronomy
- Canada-France-Hawaii Telescope (CFHT) was a pioneer in archiving data from ground-based observatories
- Digital Revolution in astronomy happened in the 1980's






#### The Canadian Astronomy Data Centre

# **History**

- Canadian Astronomy Data Centre was created in 1986
- Astronomers and Computer Scientists
- supported by the Canadian Space Agency
- original mandate: to serve Hubble Space
  Telescope

#### **CADC** Firsts

- First web interface in astronomy
- Previews of data
- On-the-fly calibration
- Advanced image processing







**The Canadian Astronomy Data Centre** 

### **Current Collection at CADC**



Canada-France-Hawai'i Telescope Hawai'i

CODATA: Montreal September 30, 2002



Dominion Radio Astrophysical Observatory British Columbia

> Gemini North Telescope Hawai'i

James Clerk Maxwell Telescope







Gemini South Telescope Cerro Pachón, Chile Hubble Space Telescope

Hawai'i



#### The Canadian Astronomy Data Centre



- Many Services – Digitized Sky Survey
  - Archive Inter-operability
- Meta-Data Catalogues
  - 19 databases
  - 80,000,000 rows
  - 34 gigabytes
- Data Files
  - 12,000,000 files
  - 20 terabytes

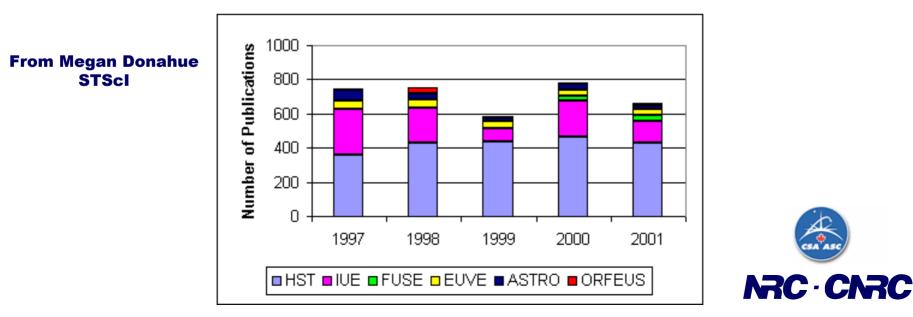


# **A Brief History of Data Archiving in Astronomy**

- Archiving is a word that does not adequately describe the activities, capabilities, and functions of data centres
  - Store, protect, catalogue, facilitate access, lobby for open data policy
  - Lobby for effective handling of data and metadata
  - Develop processing pipelines to add value
  - Execute processing on request






Do astronomers publish research based on archival data?



**Scientific Impact of Multi-Mission Archive at Space Telescope** Science Institute

### •~10% of the most-cited papers in the ISI database are based on MAST archival data

- Over 600 papers/year with HST and other archives
- ♦ HST Data: Retrieval rate is 4 times the ingestion rate
- Over 30,000 datasets requested per month (over 8,000 are non-HST data); ~400,000 web hits per month



#### **The Virtual Observatory**

#### CODATA: Montreal September 30, 2002

### International VO initiatives

- Massive homogeneous survey datasets are being created
  - Sloan Digital Sky Survey
  - 2MASS infared survey
  - Canada-France-Hawaii Legacy Survey
- Multi-wavelength survey datasets can be constructed
- Network bandwidth is increasing
- Astronomers have embraced many online services
- Funding agencies are receptive

# New types of science will be possible with new modes of data access



NVC



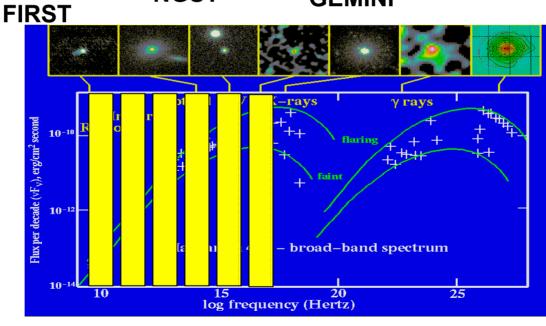
#### **The Virtual Observatory**

CODATA: Montreal September 30, 2002



ALMA




NGST



GEMINI



FUSE





### International initiatives: Different strokes for different folks

- Major initiatives in Canada, the United States, the European community, the United Kingdom. (Australia, India, Russia)
- Each VO group has their own view of what it means to produce a VO and what the priorities should be.
- U.S.: A high-level distributed infrastructure, tools.
- U.K.: Several thrusts: data pipelines, ontology, data mining
- Europe: VO closely associated with operational data centers and other groups
- Canada: VO is within the Canadian Astronomy Data Centre
- Data-centric versus infrastructure-centric views



NVC

#### **The Virtual Observatory**

CODATA: Montreal September 30, 2002

# Definition

The Virtual Observatory will be said to exist when astronomers can successfully execute scientific queries that seamlessly cross archive boundaries and wavelength boundaries, can combine the returned datasets in a way that permits their joint processing, and can achieve this without the need to understand engineering-level details of the instrument that produced the returned datasets.

- Discussions of online toolsets, grid computing, distributed datasets, etc. are implementation details.
- "Observatory" implies that the product is pixel data
- Are analysis tools and catalogues legitimate products?
- The Virtual Observatory needs to be defined in terms of capabilities delivered to scientists (the users).



#### **The Virtual Observatory**

Convergence ?

- Despite the differences in viewpoint at this early stage of the VO game, the approaches will converge as projects become reality.
- Interoperability
- Standards
- Integration
- But there need to be new investments in data archiving centres to match the investment in higher level infrastructure.
- POTENTIAL CONTENT CATASTROPHE FOR VO



#### **Data Policy in Astronomy**

CODATA: Montreal September 30, 2002

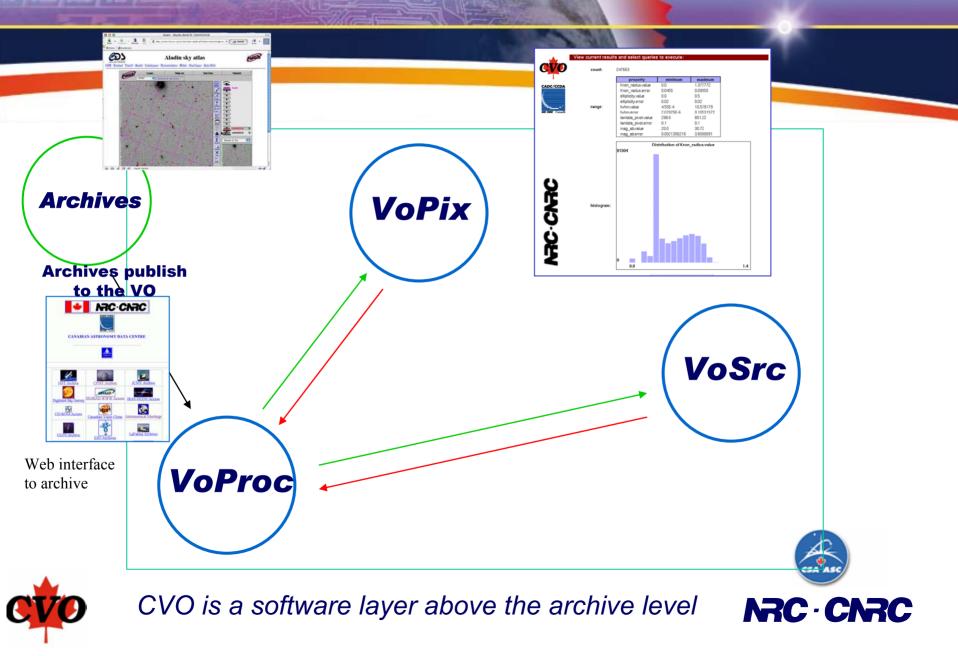
#### **Standard Practice**

- Proprietary period of 1-2 years during which only the proposer of the observations may access those data
- Some data is calibrated and much is not
- Data quality is an issue
- Metadata completeness is an issue
- Metadata quality is an issue



#### Data Policy: Dark clouds on the horizon

- Past history
  - Canada has benefited enormously from open data access (and facility access) policies of the United States
    - Data access: Largely NASA
    - · Facility access: NOAO and many others
- NASA has been very progressive
- Many facilities have had no channels to access data (NOAO), some do not save and protect data (e.g., Keck telescopes: U. California and California Institute of Technology)
- Europe has been very progressive: BUT now the archives of the European Southern Observatory are CLOSED to astronomers outside of Europe.




#### Data Policy: Dark clouds on the horizon

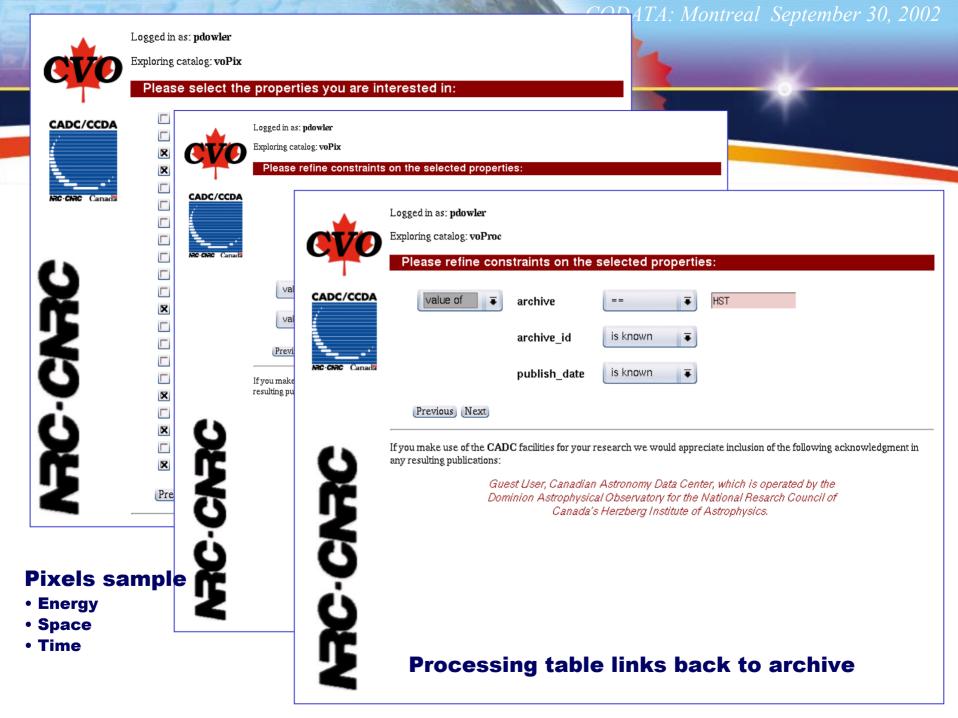
- Present-day data policies are very mixed:
  - Tension between observatory operations and archiving needs
- Canada has been progressive
  - Canada-France-Hawaii Telescope archives since 1980s
    - Data quality has been fair
- Canada and Chile were the leading forces in creating an archive for the Gemini telescopes (partners U.S., U.K., Canada, Argentina, Chile, Brazil, Australia)
- Canada and France are considering a long (~ 3 years) proprietary period for the CFHT Legacy Survey



### **CVO** Architecture



# **CVO** Goals


CODATA: Montreal September 30, 2002

#### The CVO system provides a view on archive content:

- High-level
- Scientific descriptors
- Not instrument specific
- Integrates different archive content

|               | Exploring catalog: voPix |                                                           |
|---------------|--------------------------|-----------------------------------------------------------|
|               | Please select the p      | roperties you are interested in:                          |
| CADC/CCDA     | 🗖 RA                     | right ascension (J2000)                                   |
| /             | 🗖 DEC                    | declination (J2000)                                       |
| <u>í</u>      | GLONG                    | galactic longitude                                        |
| L             | 🗷 GLAT                   | galactic latitude                                         |
| ·             | ELONG                    | ecliptic longitude                                        |
| NC-CNC Canada | 🗖 ELAT                   | ecliptic latitude                                         |
|               | 🔲 spatial_span           | spatial coverage (size)                                   |
|               | 🔲 spatial_sample         | spatial sampling resolution (bin size)                    |
|               | 🔲 spatial_fill           | fill-factor: fraction of area actually sampled            |
|               | 🔲 time_start             | time of start of observation (UT)                         |
|               | 🔲 time_end               | time of end of observation (UT)                           |
|               | 🗷 time_span              | time coverage (duration)                                  |
|               | 🔲 time_sample            | time sampling resolution (bin size)                       |
|               | 🔲 time_fill              | fill-factor: fraction of time_span actually sampled [0,1] |
|               | 🔲 lambda_min             | minimum wavelength                                        |
|               | 🔲 lambda_max             | maximum wavelength                                        |
|               | 🗷 lambda_pivot           | bandpass pivot wavelength                                 |
| i.            | 🔲 lambda_span            | wavelength coverage (lambda_max - lambda_min)             |
|               | 🗷 lambda_sample          | wavelength sampling resolution (bin size)                 |
|               | 🔲 lambda_fill            | fill-factor: fraction of lambda_span actually sampled     |
|               | 🗷 E(B-V)                 | Galactic extinction                                       |

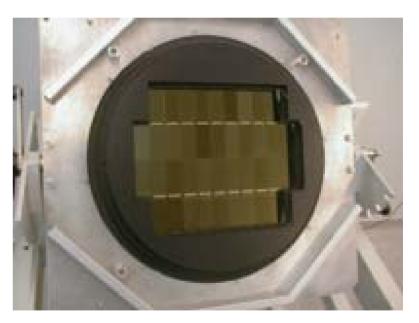




# **CVO Ultimate Goal**

CODATA: Montreal September 30, 2002

Multi-wavelength, hierarchical <u>object</u> catalogues are a representation of the state of our understanding of the universe.


| <b>▲</b>      | Logged in as: pdowler     |                                                           |
|---------------|---------------------------|-----------------------------------------------------------|
|               | Exploring catalog: voPix  |                                                           |
|               | Diesse select the         | properties you are interested in:                         |
| 1 I           | Thease select the         | properties you are interested in.                         |
| CADC/CCDA     | 🗖 RA                      | right ascension (J2000)                                   |
| /             | 🗖 DEC                     | declination (J2000)                                       |
| <u>í</u>      | GLONG                     | galactic longitude                                        |
| 1 L           | 🗷 GLAT                    | galactic latitude                                         |
|               | ELONG                     | ecliptic longitude                                        |
| MU'UNU Canada | 🗖 ELAT                    | ecliptic latitude                                         |
|               | 🔲 spatial_span            | spatial coverage (size)                                   |
|               | 🔲 spatial_samp            | le spatial sampling resolution (bin size)                 |
|               | 🔲 spatial_fill            | fill-factor: fraction of area actually sampled            |
| <b>C</b> )    | 🔲 time_start              | time of start of observation (UT)                         |
|               | 🔲 time_end                | time of end of observation (UT)                           |
|               | 🗷 time_span               | time coverage (duration)                                  |
| •             | 🔲 time_sample             | time sampling resolution (bin size)                       |
|               | 🗖 time_fill               | fill-factor: fraction of time_span actually sampled [0,1] |
| ~             | 🔲 lambda_min              | minimum wavelength                                        |
| 0             | 🔲 lambda_max              | maximum wavelength                                        |
| · ·           | 🗷 lambda_pivot            |                                                           |
|               | 🔲 lambda_span             |                                                           |
|               |                           | le wavelength sampling resolution (bin size)              |
| 2             | 🔲 lambda_fill             | fill-factor: fraction of lambda_span actually sampled     |
|               | 🗷 E(B-V)                  | Galactic extinction                                       |
| -             | Previous Undo C           | lear Nevt                                                 |
|               | (Terrorisdas) (Ollado) (C |                                                           |



# CODATA: Montreal September 30, 2002

# **CFHT MegaCam**

- A 40 CCD camera
  - 320 Megapixels
  - 1 square degree on the sky
- Raw Data Rate
  - 720 megabytes per image!
  - 100 gigabytes per night!
  - 20 Terabytes per year!





### **CFHT Legacy Survey**

CODATA: Montreal September 30, 2002

### CFHT Legacy Survey

- SCIENCE
  - Determine the fate of the universe

- Data Policy
  - Data are released immediately to the Canadian and French communities and to the world after a proprietary period







### **CFHT Legacy Survey**

CODATA: Montreal September 30, 2002

### **CFHT Legacy Survey**

- Partnership between CFHT (Hawaii), CADC (Victoria), TERAPIX (Paris), CDS (Strasbourg)
- Science: Supernovae, Weak Lensing, Kuiper Belt
- 5 years / 500 nights
- 20 Terabytes per year
- 50 million objects with high-quality imaging
- Processed image products and catalogues
- 100 Terabyte project

### Data Distribution via network

- 150 Mbps *continuously* for 5 years
- CANET/BCNET
- Need Gbit network







### **CFHTLS: Storage and Processing**

- DVD jukeboxes
  - 4.7 Gbytes/disk
  - 16 \$/Gbyte
  - 11.5 Tbytes/m<sup>2</sup>
  - 6 jukeboxes/year
  - 3,900 disks/year
- High overhead
  - Operationally
  - Physical space







### **CFHTLS: Storage and Processing**

- Spinning disks – 20 Terabytes in each rack
- Processing
  - 20 1.5 GHz CPUs in each rack
- Cost effective
- Effective use of space
- Reliability ???









# Astronomy and Astrophysics

- Virtual Observatory recognizes the value and effectiveness of good information management in astrophysics
- Astronomy has a good IT foundation to build upon
- Funding agencies are receptive
- Data access policies need to be monitored for problems
- Virtual Observatory needs to invest in both infrastructure and in data







# **A Brief History of Data Archiving in Astronomy**

### Outline

#### History and CADC

- I will neglect NASA and concentrate on what I know
  - CFHT archived their digital data in the 1980's
  - Plates were taken home but remained the property of the observatory which never recalled them
- Hubble Space Telescope opened doors in archiving for optical astronomers
- Archiving is a word that has outlived its usefulness
  - Archive functions: Store,protect,catalogue, facilitate access, lobby for open data policy
  - Non-archive functions: Develop processing pipelines to add value
- Archive Status: Do astronomers do research with archival data? YES HST examples
  - Deliver the archive over and over/ Megan's publication numbers



#### **The Virtual Observatory**

CODATA: Montreal September 30, 2002

### Outline

- Virtual Observatory initiatives: IVOA
  - Definition of the VO
  - Different strokes for different folks
  - High-level infrastructure
  - Where's the data?
  - There need to be data-centric initiatives also
  - THE GOALS ARE WELL-ALIGNED

