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ABSTRACT  
 
In Inertial Navigation System (INS) attitude estimation dominates the accuracy of 
velocity and position estimation. Traditional gyro-based attitude estimation assisted with 
Kalman filtering is subject to unbound error growth with time especially as using low-
cost Micro-Electro-Mechanical System-based (MEMS-based) sensors for land vehicle 
application. Thus, in recent years a low-cost INS is still limited to provide an acceptable 
navigation solution. This paper introduces a new fuzzy expert system to fuse multi-sensor 
data from MEMS accelerometers, MEMS gyroscopes and a digital compass based on 
their complementary characteristics related to the corresponding motion status. Field test 
results have shown the drift-free and smooth attitude estimation have been achieved by 
using our multi-sensor data fusion algorithm. The improvement of velocity and position 
estimation by our proposed method is significant, showing an applicable solution to land 
vehicle navigation using low-cost dead-reckoning sensors. 
 
INTRODUCTION  
 
The Global Positioning System (GPS) has found widely applications in land vehicle 
navigation, as it can provide position solutions not only cost-effective but also with long-
term accuracy and availability (Parkinson and Spilker, 1996). However due to the signal 
fading in urban area, it requires aids from other enabling sensors. A popular solution to 
this problem is to integrate GPS with complementary navigation sensors such as INS, 
which is based on dead-reckoning methodology to obtain the position state. For land 
vehicle application, MEMS-based inertial sensors with low cost and small size are the 
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affordable option. But the trade-off is the poorer performance of relatively high 
instrument bias, drift and noise.  
Based on INS mechanization, the error of velocity and position estimations will be 
mainly governed by the accuracy of the estimated attitude (Titterton and Weston, 1997). 
In traditional approach, only gyroscopes are used for attitude determination and attitude 
errors are compensated by Kalman filter method. But the Kalman filter is model-
dependent and a priori the model parameters need to be known (Brown and Hwang, 
1997). For a low-cost sensor, the behaviors of noisy and imprecise measurements are 
hard to model properly and the sensor biases and scale factors are dynamic and difficult 
to be estimated accurately. While Kalman filter is working in prediction step without 
measurement updates, the estimated errors are accumulating with time due to the nature 
of the recursive process in error state equations. Thus, a Kalman filter-based attitude 
estimation using low-cost gyroscopes only would result in unreliable solutions over long-
term prediction.  
 
In this paper, we integrate three low-cost sensors, MEMS accelerometers, MEMS 
gyroscopes and a magnetometer for attitude estimation. A magnetometer with 
complementary characteristics to gyroscopes can provide absolute heading information 
relative to the magnetic north without time-accumulated error. For tilt sensing, when 
vehicle is static, the accelerometer measurement containing gravity field only can directly 
derive pitch and roll angle without time-accumulated errors. Based on the physical 
characteristics of each sensor, the accuracy of attitude estimation of each sensor is related 
to vehicle dynamics. Therefore, a fuzzy logic expert rule-based system is designed to 
identify the status of vehicle motion and fuse the data from these different sensor 
modalities. The proposed system can bound the attitude errors and reduce error growth 
when vehicle stop is available. Field tests using a van driven on a road are performed to 
examine the accuracy of vehicle attitude estimated by the proposed system. The 
performance improvement in velocity and position domains using the fused attitude is 
also discussed. 
 
ATTITUDE ESTIMATION BY MULTI-SENSORS 
 
The principle of inertial navigation is to derive the attitude, velocity and position of a 
moving body by measuring its dynamics based on Newton’s Law. To sense the dynamics 
of the vehicle, the IMU is aligned with the body frame consisting of three orthogonal 
axes where x is in the direction of forward motion of the vehicle and y is in the direction 
of transverse motion of the vehicle. In land vehicle navigation, the motion of a vehicle on 
the earth surface is mostly represented in the navigation frame of which the axes are 
aligned to the local north (n), east (e) and down (d). The transformation between the 
navigation frame and the body frame can be accomplished by a sequence of elementary 
rotations about the attitude angles. Therefore, the vehicle velocity and position in the 
navigation frame can be obtained when the vehicle attitude and the acceleration measured 
in the body frame are determined. 
 
The attitude of the vehicle is represented by three Euler angles, roll (φ ), pitch (θ ), and 
yaw ( ψ ), which are the rotation angles about the x, y and z axes, respectively. The 
changes of Euler angles, called Euler rates, are relative to the rotation rates of the body 
frame which can be measured by gyroscopes directly in the following manner: 
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where Bxω , Byω , and Bzω are angular velocity of the body frame measured by gyroscopes. 
 
The shortcoming of using gyroscopes to estimate attitude is the error accumulation due to 
the integration process. Even small amounts of gyro bias will result in substantial error 
growth of attitude without bound. Especially for low-cost sensors, attitude estimation 
would become unreliable since sensor errors are dynamic and much difficult to model. 
 
In contrast to gyroscopes, accelerometers can be used to directly derive vehicle pitch and 
roll angles while vehicle is static or moving linearly at constant speed. Under these 
condition vehicle pitch and roll angles can be calculated as follows. 
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where BxA and ByA  are acceleration of the body frame measured by accelerometers and 
g is the local gravity field. 
 
According to equation (4) and (5), no integration is required and therefore tilt estimation 
error will not increase with time. The accuracy of tilt estimation mainly governed by the 
accelerometer bias to gravity field ratio is much better than gyro-based estimation. Thus, 
accelerometers can be used to bound and reset the tilt information calculated by the 
gyroscopes when the vehicle is not moving. (Ojeda et al., 2002) 
 
For vehicle heading determination, a magnetometer is able to provide absolute heading 
information relative to the magnetic north without time-accumulated errors (Caruso, 
1997). But the compass measurements are still subject to the influence of nearby ferrous 
effects and interference. In land vehicle application, the nearby ferrous effects are mainly 
generated by the vehicle itself and have a weak time-variant characteristic. On the other 
hand, the interference is the result of magnetic disturbances from environment such as 
power line and it has a strong time-variant characteristic. In addition to these 
environmental magnetic effects, the declination angles must be determined to correct for 
true north. Thus, we can model the nearby ferrous effects and declination angles as the 
combination of bias and scale factor as follows. 
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where ψ  is the true heading, ψ̂  is the heading provided by magnetometer, ψb is the sensor 
bias, ψS  is the scale factor, and ψn  is the noise and disturbance. After sufficient data of 
measurement and true value are available, the biases and scale factors can be estimated 
by using least squares method (Wang, 2004).  
 
It should be noticed that in land vehicle application the magnetometer is not always 
confined to a level plane in which the earth magnetic field stands. Thus, the tilt angles 
should be determined for heading corrections (Caruso, 1997). Since the tilt information is 
very difficult to be accurately estimated using low cost sensors when vehicle is moving, 
we only apply tilt compensation when vehicle is static. Thus, we can use magnetometer 
heading to bound and reset the heading information calculated by the gyroscopes when 
vehicle is not moving. 
 
Once vehicle attitude is determined, vehicle velocity and position in the navigation frame 
can be derived from accelerometer measurements based on vehicle dynamics model. In 
this paper we applied the constrained motion model proposed by Brandt and Gardner, 
1998. The extra information of vehicle motion constraints can be used to reduce the 
navigation errors. The constrained motion model is defined as fellows. 
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where fV is the vehicle forward velocity. tx and ty are the vehicle coordinate in the XY 
plane of the earth-fixed tangent frame. 
 
Based on equation (7) to (9), the accuracy of the estimated velocity and position are 
mainly dominated by pitch and heading errors. Thus, in this study we only assess the 
accuracy of the estimated pitch and heading information. 
 
FUZZY EXPERT SYSTEM FOR MULTI-SENSOR DATA FUSION 
 
As mentioned in previous section, the performance and characteristics of each sensor are 
related to vehicle dynamics. Based on the knowledge of specific physical shortcomings 
and strengths of each sensor modality in the corresponding status of vehicle motion, 
vehicle attitude information can be derived from multi-sensor data. Thus, the association 
between raw measurements and vehicle dynamics should be investigated and identified. 
In this paper, we apply a fuzzy expert system for the identification of vehicle dynamics. 
Then, according to vehicle motion status we use the most suitable sensor to estimate 
vehicle attitude. In the meantime, the errors of the unused sensors are also estimated 
based on the statistics of observations. More specifically, we use the accelerometers and 
the magnetometers to derive tilt and heading information and estimate gyro drift using 
least squares method when vehicle is static. When vehicle is moving, we estimate vehicle 
attitude using compensated gyro measurements. The block diagram of our fuzzy expert 
system is shown in Figure 1. 
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Figure 1: System Block Diagram 
 
To correctly identify vehicle dynamics (static/moving) based on low-cost sensor 
measurements, the identification system must have the capacity of dealing with 
uncertainty and imprecision due to the noisy measurements and vehicle vibration effects. 
Both of probability-based and fuzzy set theories can handle the uncertainty and 
imprecision of data.  However, the failings of probability in situations where little or no a 
priori information is known provide an arena for the use of fuzzy expert system (Kandel, 
1992). Fuzzy expert system is an expert system which incorporates fuzzy sets and/or 
fuzzy logic into its reasoning process and/or knowledge representation scheme. Fuzzy set 
theory provides a natural method for dealing with linguistic term which is a very effective 
knowledge representation format for imprecise and uncertain information (Kandel, 1992). 
Described in the following is the development of a fuzzy expert system for land vehicle 
dynamics identification. 
 
Shown in Figure 2 is the architecture of the fuzzy logic-based vehicle dynamics 
identification system. In this research, the Mamdani type fuzzy inference system, which 
is considered as the most commonly seen fuzzy methodology, has been used (Mamdani 
and Assilian, 1975). The input variables for the system are the accumulated jerk 
magnitude in x, y, and z direction of body frame to interpret the degree of vehicle motion. 
The definition of the accumulated jerk magnitude is described as follows. 
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where the subscript k indicates the present measurement index and d is the backward 
accumulation quantity. After taking the summation of jerk, the vibration and noise effect 
on observations are diluted and the accumulated jerk difference between stop and move 



can become more significant. The output of the fuzzy inference system is a numeric 
rating between 0.05 and 0.95 to describe vehicle dynamics grade. A lower rating value 
indicates a higher likelihood of having vehicle static.  
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Figure 2: Fuzzy Logic-based Vehicle Dynamics Identification System 
 
Once the inputs and output are defined for the system, the membership functions are 
further designed to define the quantity of the linguistic terms such as stop, uncertainty 
and move for fuzzy output. In this research, the design of the membership functions is 
based on our personal experience and knowledge gained from the field test data. At the 
same time, a set of rules is developed to describe the relationship between the input and 
the output. The rules are established basically based on common sense reasoning and 
further modified through processing the field test data. The final tuned membership 
functions and rules are shown in Figure 3 and Table 1.  Then, the output fuzzy set is 
defuzzied into a crisp value using the center of the area method. It should be noticed that 
the design of fuzzy system is vehicle dependent and varies with the location of sensor 
installation. 
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Figure 3: Membership Functions used in Fuzzy Expert System 



 
Table 1: Rules used in Fuzzy Expert System 
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To identify the stop or move of a vehicle based on the fuzzy output values, a set of 
decision making rules is designed as shown in Figure 4. The rule 1, 2, and 3 work as a 
classifier to transfer the continuous numeric rating values into a Boolean value to 
distinguish stop and move of vehicle. The rule 4 is useful to instantly detect the 
movement of vehicle to avoid the detection delay due to the use of the accumulated jerk 
as our fuzzy input. 
 

Table 2: Rules used for Stop Identification 
 

If the present motion status is stop and the jerk 
magnitude in forward direction is larger than a 
criterion value, Then vehicle is moving.

Rule 4

If Dynamics Rating is larger than 0.05 and smaller 
than 0.95, Then the present motion status equal the 
previous motion status.

Rule 3

If Dynamics Rating equal 0.05, Then vehicle is stop.Rule 2

If Dynamics Rating equal 0.95, Then vehicle is moving.Rule 1

If the present motion status is stop and the jerk 
magnitude in forward direction is larger than a 
criterion value, Then vehicle is moving.

Rule 4

If Dynamics Rating is larger than 0.05 and smaller 
than 0.95, Then the present motion status equal the 
previous motion status.

Rule 3

If Dynamics Rating equal 0.05, Then vehicle is stop.Rule 2

If Dynamics Rating equal 0.95, Then vehicle is moving.Rule 1

 
 
As mentioned early, when the stop of vehicle is detected, we can use the accelerometers 
and the magnetometers to derive tilt and heading information and estimate gyro drift. 
Under this condition, we can average the tilt and heading estimations to remove the noise 
effects since vehicle attitude would remain static. On the other hand, the random walk of 
gyro measurement and gyro bias can be monitored. In this research, we use least squares 
method to estimate the gyro noise and bias effects in attitude domain, that is, the 



estimated attitude errors over time. The role of the least squares estimation is to 
determine the attitude errors rate in a statistical sense. The least squares problem can be 
described by a linear equation as fellows. 
 

AXL =                                                                            (13) 
 
The observation, L, is the difference between the gyro-derived attitude at each epoch and 
its mean value during stop periods. This value indicates the divergence of the gyro-
derived attitude at each epoch. The design matrix, A, consists of the accumulated time 
from stop at each epoch. The unknown parameter, X, is the attitude errors rate to be 
estimated. Once vehicle starts to move, the attitude errors rate is estimated based on the 
collected information during stop periods. Therefore, in every stop the attitude drift error 
using gyro measurements can be controlled and the dynamic gyro noise and bias effects 
in attitude domain can be estimated. 
 
When vehicle is moving, attitude information would be determined by this compensated 
gyro measurement based on equation (1) to (3). In general driving conditions of land 
vehicle, the roll angle is small and the rotation rate in z-axis is much larger than y-axis. In 
addition, the roll estimation is very difficult to be accurate using a lost-cost gyro. Thus, 
for yaw rate estimation we ignore the effects of y-axis rotation and for pitch estimation 
we consider the effects of z-axis rotation only when vehicle is making a turn. Based on 
the vehicle dynamics constraint, no lateral motion is allowed. Thus, the y-axis 
accelerometer measurement only contains gravity field which can be used to derive roll 
angle while vehicle isn’t making any turn. In this research we simply derive the roll 
information during turning by interpolating the accelerometer-derived roll angle before 
and after turning. However, the drawback of this method is the time delay of estimation 
output when vehicle is making a turn 
 
TEST RESULTS AND DISCUSSIONS 
 
Filed tests were performed to examine the performance of our proposed system. A low-
cost MEMS-based inertial sensor, namely MT9 made by Xsens Inc., was used in the 
experiments. The MT9 is a digital inertial measurement unit that measures 3D rate-of-
turn, acceleration and earth-magnetic field. The data output rate was chosen as 20 Hz 
which is high enough to sample vehicle dynamics. In the meantime, two Javad Legacy 
GPS receivers were used to provide 1 Hz carrier phase DGPS solutions for reference 
position, velocity and heading. All of the sensors were mounted in a van and their outputs 
were logged and synchronized with computer time for subsequent analysis. The test was 
performed in a parking lot at the University of Calgary. The trajectories of the tests are 
shown in Figure 4. The van stopped four times during the test and took about 6 minutes 
to complete the trail.  

 



 
 

Figure 4: Test Trajectory  
 
Figure 5 to 7 show the raw data including 3-axis acceleration, angular rate, and magnetic 
field measured by MT9. It has shown that the accelerometer and magnetometer 
measurement keep quite stable when vehicle is stop. The accelerometer measurement 
profiles also imply the diversity of vehicle jerk between stop and move. For gyro 
measurement, vehicle rotation dynamics in z-axis is much larger than noise level. By 
contrast, the dynamics of pitching and rolling of a land vehicle is much lower than 
yawing and gyro measurements in x-axis and y-axis are much noisy due to vehicle 
vibration and road raggedness. 
 

 
 

Figure 5: Raw Measurement - Accelerometer 
 



 
 

Figure 6: Raw Measurement - Gyroscope 
 

 

 
 

Figure 7: Raw Measurement - Magnetometer 
 
Shown in Figure 8 is the result of vehicle dynamics identification provided by the 
proposed fuzzy expert system. The stop and move of vehicle are correctly distinguished. 
The fuzzy expert system has properly interpreted the raw measurements and successfully 
recognized their relationship to the vehicle dynamics. 
 



 
 

Figure 8: Vehicle Dynamics Identification 
 
Figure 9 illustrates the heading angle derived from gyro measurements only (no aid) and 
modified by the fuzzy expert system, respectively. The reference heading is derived from 
DGPS velocity while vehicle is moving. When vehicle is static, we can adopt the 
previous reference heading as the present reference. Obviously, when vehicle is stop, the 
gyro drift errors have been controlled by magnetometer update. On the other hand, when 
vehicle is in motion, a smooth heading estimation that cannot be achieved by using a 
magnetometer because of noise and tilt effects has been accomplished by using the 
compensated gyro measurements. 

 
 

Figure 9: Heading Estimation 
 
Figure 10 illustrates the pitch angle derived from gyro measurements only (no aid) and 
modified by the fuzzy expert system, respectively. With the aid of the fuzzy expert 
system, pitch estimation has been bound and controlled well rather than the gyro-based 



pitch estimation with drift. Since no reference pitch information is available in our test, 
we evaluate the accuracy of the estimated pitch by examining the velocity calculated by 
equation (7). Figure 11 shows the velocity estimation using gyro-based (no aid) and data 
fusion-based (aid by fuzzy expert system) pitch information, respectively. Obviously, the 
gyro-based one diverges quickly and cannot be used for navigation. By contract, the 
velocity derived from the fuzzy expert system is very close to reference velocity. Thus, 
the accuracy of the forward velocity estimation has been significantly improved by using 
the fusion-based pitch angle derived from the proposed method. 

 
 

Figure 10: Pitch Estimation 
 

 
 

Figure 11: Velocity Estimation 
 
For further assessing the accuracy of heading, velocity and position estimation, we 
compare them to the synchronized DGPS data with 1Hz down-sample rate to examine the 
errors. Figure 11 shows the heading, velocity and 2D position estimation errors while we 



apply the proposed multi-sensor data fusion algorithm. Obviously, the heading and 
velocity errors have been bound and controlled well during this about 6-minute drive 
with couple stops in-between. In statistical analysis the mean and standard deviation (std) 
values of heading error are –0.09 and 1.677 (degree), respectively. The mean and std 
values of velocity error are –0.127 and 0.639 (m/s), respectively. In terms of position 
domain, position error would be accumulated with time due to the integration process. 
The final position error over this 6-minute stand-alone navigation is about 50 meters 
which is far beyond the expectation provided by a low-cost MEMS-based inertial sensor. 
 

 
 

Figure 12: Heading, Velocity and Position Estimation Error 
 
 
CONCULSIONS 
 
A new multi-sensor data fusion algorithm for land vehicle attitude estimation has been 
developed based on a fuzzy expert system. First, we have investigated in-depth physical 
characteristics of each low-cost sensor and its error sources related to vehicle dynamics. 
Then, a fuzzy expert system has been designed to correctly identify vehicle dynamics. 
Finally, online error estimation and multi-sensor data fusion were implemented based on 
the identified motion status. 
 
The results of the field tests have shown that the proposed method can provide adapted 
attitude estimation without unbound error drift and noisy disturbance. By using this 
fusion-based attitude, the accuracy of velocity and position estimation has been 
significantly improved. For further research, integration with GPS to include more error 
control mechanism to develop a robust land vehicle navigation system is recommended. 
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