The Open Source Paradigm and the Production of Scientific Research:

A Future Vision and Implications for Developing Countries

Charles M. Schweik

Department of Natural Resources Conservation and Center for Public Policy and Administration University of Massachusetts, Amherst

Introduction

Challenges in communication of scientific research

- Space limitations in paper media
- Library resources lacking
- Challenge of repeatability
- Distributed and uncoordinated research efforts

 The technology-innovation lag (Drucker, 1999)

A Future Vision?

A "next-generation E-journal", that combines:

- 1. The Web as an interactive platform for all stages of the research process;
- 2. Peer-review for quality control and an incentive for participation;
- 3. Principles of Open Source Programming as a model for global collective action

Presentation Outline

- Design Principles of Open Source Projects
- Why OS may be a New Paradigm for Global Collaborative Research
- The Emergence of Open Content Experiments
- An Example: Research in Landuse/Landcover Change Modeling
- Conclusions

Principles of "Open Source" Software Licensing

- Free distribution of the software
- Readable source code
- Improvements fall under the same license
- Past authors' contributions documented
- High profile success stories: Linux Operating System, Apache Web Server – very complex software

Design Principles of Open Source Programming Projects

- Internet-based collaboration
- Volunteer programmers/testers
 - (in some cases) organizations pay employees to participate
- Modularity and Parallel development
- Peer review
- Incremental release schedules

OS Project Lifecycle

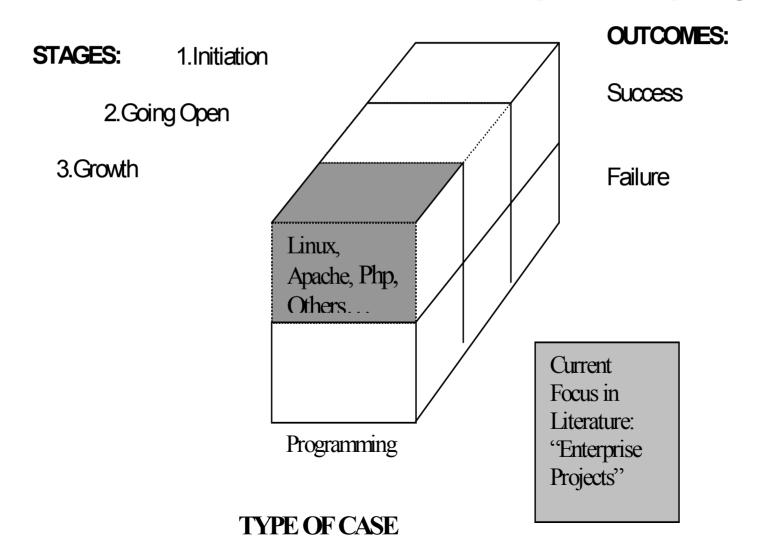
- Initiation phase
 - Individual or small group with a "critical need" or vision
 - "Kernel" with "plausible promise":
 - Need highly skilled or (ideally) people prominent in their field
 - Modular design
 - Decision to embrace OS license
 - Communication systems (email lists, etc.)
 - Version Control Systems (CVS, Subversion)
 - Project Governance hierarchies, rules, norms

OS Project Lifecycle: Growth, Stability or Decline?

- The goal is growth in participation
 - With more eyes, difficult problems are easier to solve
 - OS Enterprise (e.g., Linux, Apache)
 - Large network of developers
 - Regional coordinators, many languages
 - Complex systems of coordination and core staff established

Intrinsic motivations	- Enjoyment, self-esteem

Intrinsic motivations	- Enjoyment, self-esteem
Altruism or social/political motivations	- "Software should be free!"


Intrinsic motivations	- Enjoyment, self-esteem
Altruism or social/political motivations	- "Software should be free!"
To build skills	- OS as distance learning; Peer-review

Intrinsic motivations	- Enjoyment, self-esteem
Altruism or social/political motivations	- "Software should be free!"
To build skills	- OS as distance learning; Peer-review
Self-promotion	- Become known

Intrinsic motivations	- Enjoyment, self-esteem
Altruism or social/political motivations	- "Software should be free!"
To build skills	- OS as distance learning; Peer-review
Self-promotion	- Become known
Personal needs	- A software gap - A complex problem (can't do it alone)

A Problem:

Most literature to date focuses on a small number of successful "enterprise" projects.

Why an Open Source Approach Might be a New Paradigm for Global Collaborative Research

- The entire research process and products are shared
- Incremental publishing faster communication of new findings
- Possibly reaching a larger (global) audience? -because of the Internet and open licensing
- Increased speed of innovations? ... why?

The Internet as "Innovation Commons" Lessig's *The Future of Ideas* (2001)

- Example: Web exponential growth from 1994-1999? Two reasons
 - Internet end-to-end (e2e) design
 - Inclusion of the "view source" function in web browsers
 - The Web is arguably the largest and most successful distance learning program in history
- Alternatively, proprietary software blocks contributions from end-users and outside developers (Hars and Ou, 2002)

The Emergence of "Open Content" Licenses

- Extending OS software license principles to digital content
- Creativecommons.org
- 11 license variants
- Examples:
 - "By Attribution" Others can copy, distribute, display and perform copyrighted work – and produce new derivatives from it – but only if credit is given to the original author
 - "No derivative works" People can copy, distribute, display, and perform the work verbatim, but cannot derive new works from it.

The Emergence of Open-Content Licensing "Experiments"

- Books ("eBooks") in the public domain
 - Project Gutenberg (http://promo.net/pg)
- Encyclopedias
 - Nupedia (www.nupedia.com)
 - Wikipedia (http://www.wikipedia.com)
- Legal arguments
 - Openlaw (http://eon.law.harvard.edu/openlaw; legal arguments)
- Music
 - OpenMusic Registry (www.openmusicregistry.org)
- Instructional material
 - OpenCourseWare (http://web.mit.edu/ocw)
 - World lecture hall (http://www.utexas.edu/world/lecture)
 - Open Content for Education (http://www.life-open-content.org)
- Peer-reviewed Scientific Research
 - Public Library of Science (www.publiclibraryofscience.org)

An Example: Open-Content Research on Landuse/ Landcover Change Modeling

- A complex problem
- An issue of global interest and importance
- Connections to Global Change research program
- Many possible participants (academics, scientists, policy analysts, local/regional governments)

The Traditional Approach

Over 20 models exist (EPA, 2000; Agrawal, 2003)

Many quite complex

Utilize different modeling technologies and approaches

High transaction costs to learn/apply limits model use

An Open Content Approach: Step 1: Identify a core group of willing project participants

- Modelers
- Data Providers
- Scientists (academic, other professionals)
- Practitioners/other stakeholders

Step 2: Develop Kernel(s) with Plausible Promise

- Kernels
 - Models (open source license)
 - Theories (open content license)
 - Data (open content license)
- All kernels need to be modular to support parallel development

Step 3: Consider Incentives to Participate

Researcher (not publisher) incentives are VERY similar to OS programmers!

Intrinsic motivations	- Enjoyment, self-esteem
Altruism or social/political motivations	- Trying to solve a problem; or "Knowledge should be free!"
To build skills	- Distance learning; Peer-review
Self-promotion	- Become known
Personal needs	- A knowledge gap - A complex problem (can't do it alone)

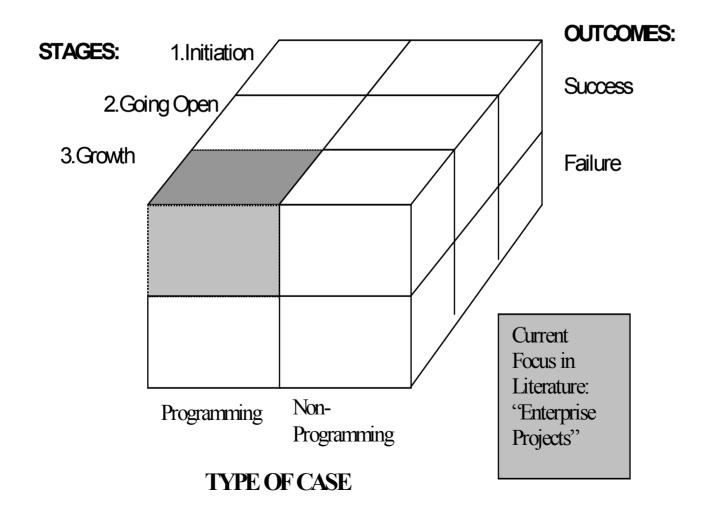
Step 3: Incentives continued...

- Scientists/academics may be paid to participate if in their area of research
- The challenge of (especially) junior researchers
 - Protect intellectual property for tenure
 - Why a peer-reviewed e-Journal is necessary publishing incentive
 - Crucial to figure out how to document intellectual property contributions
 - Can all components of the research process be treated as a form of publishing (or service)?

Step 4: Establish Systems of Governance

- Project governance
 - Team structure/responsibilities
 - Rules of operation
 - Conflict resolution mechanisms
- Select appropriate open content licenses
 - Are different licenses for models, theories and data kernels?
- System of peer-review for all three kernel types (data, models, theory and results)

Step 5: Establish Project Infrastructure


- Components of a next generation e-Journal:
 - Communication systems
 - Version control systems
 - Data Metadata and data server
 - Models Metadata and versioning system
 - Theory, empirical research and results
 - » Similar to today's e-journals
 - » Volumes, Issues, but <u>incremental</u> releases
 - Hyperlinks between kernels
 - Distance learning component
 - Special incremental issues on a particular direction
 - Last as long as there is research excitement
 - E.g., "markets" of models

Our Current Strategy

- Establish core group
 - US NSF Long Term Ecological Research Network
 - US NSF Human Dimensions of Global Change Network
 - USDA Forest Service
- Select 1 or 2 available models with plausible promise
- Establish
 - Communication systems
 - Version control systems
 - Data Metadata and data server
 - » Open Research System
 - Models Metadata and Versioning
 - » Concurrent Versioning System, Subversion, U of Vermont
- Look for additional funding to support effort
- Eventually move to e-Journal concept or partner with existing and relevant e-journal to publish theory and empirical findings

CONCLUSIONS

1. Need More Research on Factors that Lead to Successful or Failed Open-Content Projects

2. Need To Encourage the Development of Next Generation E-Journals

- Similar to e-Commerce and e-Government movements
- E-journals will not be cheap but has great potential for global collaboration and innovation
- Question of who pays if no subscription
 - Pay as you can afford model?
 - Role of NGOs and Governments to support e-journal infrastructure?

3. Some e-Journal Design Issues

- Open-content derivatives and plagiarism
 - Careful historical records of people's contributions (Dr. Cowan's talk)
 - More research on OS programming needed
- Data and models as publications?
 - Systems for quantifying importance of contributions
- Design for low bandwidth (allow for quick downloads and log off)
- Careful attention to content delivery (keynote address)

4. Implications for Developing Countries

- Depends on Internet access capabilities e.g., Nepal
- Open approach could create new opportunities for contributions and learning
 - Example Agent-based Indiana/Nepal farmer models
 - Allows for differing interpretations (Prof. Avgerou's talk)
- LULC change modeling just one example... ask about sharing of environmental institutions

Published papers can be found at:

 Public Administration and Management: An Interactive Journal (2000) - www.pamij.org

First Monday (Jan 2003) – www.firstmonday.org

Collaborators

J. Morgan Grove
USDA Forest Service

Tom Evans
Indiana University

Research Sponsors:

USDA Forest Service Global Change Program
USDA Northeastern Forest Research Station
USDA, Massachusetts Experiment Station
Dept of Natural Resources Conservation, UMass