

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Open GIS Software in Brazil: Producing Open Source in Developing Nations

Gilberto Câmara Director for Earth Observation National Institute for Space Research Brazil

The issue

Developing countries and their donor partners should review policies for procurement of computer software, with a view to ensuring that options for using low-cost and/or open-source software products are properly considered and their costs and benefits carefully evaluated" (UK IPR report, 2002)

Yes, but...

- □ We need much more than Linux!
- □ Who will develop the open source software we need?
- □ Can it be done in developing countries?

The discussion today

- The nature of open source software
 A realistic model for OS projects
- Spatial information technology
 The need for open source GIS and Remote Sensing software
- Developing an open source GIS in Brazil
 20 years of institutional, nation-wide efforts
 Technology as social construction
- Some lessons learned
 - □ How can we do OS software in the South?

The nature of open source projects

Idealized view of OS community

- □ Network of committed individuals ("peer production")
- Based on a limited number of examples

Reality of software projects

- Problem granularity
- Conceptual design
- Degree of innovation
- Social context of technology

Naïve view of open source projects

Software

- □ Product of an individual or small group (peer-pressure)
- □ Based on a "kernel" with "plausible promise"
- Development network
 - □ Large number of developers, single repository
- Open source products
 - View as complex, innovative systems (Linux)
- Incentives to participate
 - □ Operate at an individual level ("self-esteem")
 - □ Wild-west libertarian ("John Waynes of the modern era")

Idealized model of OS software

Networks of committed individuals

The reality of open source projects

Problem granularity

- □ Effective peer-production requires high granularity (Benkler)
- Each type of software induces a breakdown strategy
 - What works for an operating system will not work for a database!
- Conceptual design and Innovation
 - Most OS software is based on established paradigms (Linux is a 1970's design)
 - □ Design is the hardest part of software (Fred Brooks)
- Social context of technology
 - □ Software development requires closely-knit teams
 - Software will do nothing by itself
 - Complex software requires informed users

The reality of open source projects

Linux model is not scalable

- □ Other types of software are less modular
- □ We need more innovation, and less "reverse-engineering"

Requirements for success

- Long-term investment
- Very qualified personnel
- □ Accessible mostly to organizations, not to individuals

Plausible model

- □ "Human Genome" x "John Wayne"
- □ The "Godzilla" effect (size matters)

Real-life model of OS software

Networks of committed organizations

Spatial information technology

Basis of the technology

- Computer representation of spatio-temporal phenomena
 - Discrete objects (e.g., parcels)
 - Continuous fields (e.g., topography)
- Uses of GIS (geographical information systems)
 - Commercial applications
 - Location-based services
 - Business geographics
 - Public good applications
 - Urban cadastral systems
 - Environmental protection and prediction
 - Agriculture crop forecasting
 - Hydrological modeling

source: John McDonald (MDA)

Knowledge gap for spatial data

- Imbalance of public expenditure
- Governments build data-gathering satellites...
 - \Box ENVISAT = Us\$ 1 billion
 - \Box EOS (Terra/Aqua) = Us\$ 1 billion
- …and they hope the market will do the rest
 □ Leading remote sensing software product ≈ US\$25 M (gross)
- The model does not add up!
 - □ There is not enough market to cover large R&D expenses
 - □ The result is the "knowledge gap"

Knowledge gap for spatial data

- Most applications of EO data
 "Snapshot" paradigm
- Recipe analogy
 - Take 1 image ("raw")
 - \square "Cook" the image (correction + interpretation)
 - □ All "salt" (i.e., ancillary data)
 - □ Serve while hot (on a "GIS plate")
- But we have lots of images!
 - □ Immense data archives (Terabytes of historical images)
 - □ How many image database mining application we have?

Landsat Image – Rondonia (Brazil)

Landsat Image – Rondonia (Brazil)

Landsat Image – Rondonia (Brazil)

Bridging the Knowledge gap

- Deadlock' situation
 - Small size of commercial IP
 - Not enough income for R&D investment
 - □ Improvements on information extraction
 - Needed for the market to grow
- Making use of the deluges of data
 - □ Government-funded software development
 - Strong integration with scientific community
- Open Source GIS projects
 - Provide innovative ways to use spatio-temporal data
 - □ Effective means of advancing environmental applications

The Brazilian experience

- National Institute for Space Research (INPE)
 - Space Science, Earth Observation, Meteorology and Space Engineering
 - Staff of 1,600 (50% Master and Ph.D. degrees)
- GIS and Remote Sensing software development
 - □ Institutional program initiated in 1984
 - Aims
 - Make Brazil self-sufficient in GI technology
 - Empower users with public-good applications
 - Strategy
 - Foster qualified human resources
 - Link technology with application

SPRING

- Open access image processing and GIS software.
 - □ Multi-platform (Windows, Linux, Solaris)
 - □ Web: <u>http://www.dpi.inpe.br/spring</u> (32.000 downloads)

SPRING

Significant development effort

- 140 man-years (1994-present)
- □ 500,000+ lines of C++ code
- Designed from scratch (no reverse engineering)

Innovative solutions (firsts)

- Object-oriented spatial data model
- □ Integration of remote sensing and GIS
- □ Window-based interface in Windows and Linux
- □ Geostatistics (kriging) functions in a GIS
- Region-based segmentation and classification

Technology as a social product

- Research system in the developed world
 discourages the production of training material
 There are good books on GIS!
 - unfortunately, these books are in English and are expensive
- Need for open access of information
 Open access literature in local language
- Brazilian experience
 - three-volume set ("Introduction to GIS", "Spatial Analysis", "Spatial Databases")
 - Application examples using SPRING: key factors in software adoption

SPRING: User adoption

Universities

- Driving factors: documentation and examples, not price
- Graduate and undergrads: Geography, Earth Sciences, Social Sciences

Government institutions

- □ Replace existing US-based commercial solutions
 - Agricultural research agency (EMBRAPA)
 - Geological Survey (CPRM)
 - Census bureau (IBGE)
- Private companies
 - □ Saving of licensing costs
 - Local support and training

SPRING downloads (Top 20 countries)

Innovation in GIS

- Current generation of GIS
 - □ Built on proprietary architectures
 - \Box Interface + functions + database = "monolithic" system
 - \Box Geometric data structures = archived outside of the DBMS
- New generation of spatial information technology
 - All data will be handled by the database (inclusive images and maps)
 - □ Users can develop customized applications ("small GIS")
 - □ They need appropriate tools!

TerraLib: Open source GIS library

- Data management
 - All of data (spatial + attributes) is in database
- Functions
 - Spatial statistics, Image Processing, Map Algebra
- Innovation
 - □ Based on state-of-the-art techniques
 - Same timing as similar commercial products
- Web-based co-operative development
 - http://www.terralib.org

TerraLib applications

Cadastral Mapping

- Improving urban management of large Brazilian cities
- Public Health
 - Spatial statistical tools for epidemiology and health services
- Social Exclusion
 - Indicators of social exclusion in innercity areas
- Land-use change modelling
 - Spatio-temporal models of deforestation in Amazonia
- Emergency action planning
 - □ Oil refineries and pipelines (Petrobras)

What does it take to do it?

- SPRING and TerraLib project
 Major emphasis on "learning-by-doing"
- Development and Application Team
 Software: 40 senior programmers (10 with PhD)
 Applications: 30 PhDs in Earth Sciences plus students
- Building a resource base
 - Graduate Programs in Computer Science and Remote Sensing
 - □ SPRING and Terralib: 20 PhD thesis and 35 MsC dissertations
- Institutional effort
 - Requires long-term planning and vision

Challenges for developing countries

- Need for innovative solutions
 - □ Software is an enabling product
 - Caters for specific needs of communities
 - There are unfulfilled needs in the South (e.g. educationware)
- The world is getting more complex

(or at least we are increasing recognizing this)

- □ We need talented people to solve difficult problems
- □ There is not enough talent in the North of the Equator!
- Why should government money fund open source?
 - □ Only way to produce results in the South!
 - □ Open source will not happen by spontaneous growth
 - It is very expensive to conserve qualified resources
 - It is very important to invest in qualified resources

Government and Job Creation

	Low-Tech	High-Tech
Fixed	Waiter	Surgeon
Mobile	Assembly-line worker	Software Engineer

Conclusions

Open Source software model

□ The Linux example is not applicable to all situations

Moving from the individual level to the organization level

Spatial information technology

- □ Large R&D is needed to bridge the "knowledge gap"
- Open source GIS software has a large role
- Open source projects in developing nations
 - Combination of institutional vision, qualified personnel and strong links to user community
 - □ Government-funded to be viable