Freeing Data through the Polar Information Commons

Taco de Bruin, NIOZ Royal Netherlands Institute for Sea Research
Robert S. Chen, CIESIN Columbia University and CODATA
Mark R. Parsons, NSIDC, University of Colorado
David J. Carlson, formerly IPY IPO, now at University of Colorado
Kathleen Cass, CODATA
Kim Finney, Australian Antarctic Division
Kaitlin Thaney, formerly Science Commons, now at MacMillan, UK
John Wilbanks, Science Commons
Kim Jochum, University of Alaska

Data are the common wealth of humanity — Adama Samassekou
Convener of the UN World Summit on the Information Society
The International Polar Year 2007-2008 (IPY)

- IPY was an intensive burst of internationally coordinated, \textit{interdisciplinary}, scientific research and observations, focused on the Polar Regions (Arctic Ocean including adjacent seas and coastal regions, Southern Ocean, Antarctic Continent)
- The IPY Data Policy calls for IPY data to be made available "fully, freely, openly, and on the shortest feasible timescale"
- The IPY Framework document: "In fifty years time the data resulting from IPY 2007-2008 may be seen as the most important single outcome of the programme"
- IPY has resulted in an unprecedented amount of data of the Polar Regions
The International Polar Year 2007-2008 (IPY)

- However, access to and long-term preservation of many key IPY datasets remains problematic, especially with respect to Arctic data.
- Several disciplines, involved in IPY, have no tradition of data sharing.
- Several disciplines have no discipline-based data centres.
- As a result, scientists may not know how or where to submit data, in order to make the data available.
Realizing that the Antarctic Treaty (1959) not only established a physical commons, but also an ‘information commons’:

- Article III-1c: “...to the greatest extent feasible and practicable... scientific observations and results from Antarctica shall be exchanged and made freely available”
The Polar Information Commons (PIC)

Realizing that, though the situation in the Arctic is more complex, there is a clear need for information sharing based on shared interests:

- Monitoring and prediction of Arctic climate changes and associated impacts on the global environment
- Opening of sea routes
- Marine pollution
- Fisheries and wildlife management
- Energy extraction
- Sustainable development of indigenous peoples
The Polar Information Commons Vision

Data and information about the Polar regions are public goods that should be shared ethically and with minimal constraint.

The PIC is a shared virtual commons that parallels the ‘legal’ commons in the Antarctic and the ‘shared interest’ commons in the Arctic.

The PIC both provides an institutional framework and a technical infrastructure for sharing and preservation of polar data in the short and long term.

The PIC builds an interdisciplinary community of providers and users of scientific, polar data.
How does the PIC work?

Submit data to the PIC cloud

Polar data sources expose their data to the world through the PIC badge and open protocols

Data centers monitor new PIC data and assess and acquire important data for formal archiving, curation, and access

Australian Research Computing Infrastructure (ARCS) is initially hosting the PIC Cloud
How does the PIC work?

Stages and roles

Data providers
- Badge data as belonging to the PIC
- Expect users to comply with PIC norms and behaviour
- Are ensured of long term preservation of their data

PIC Cloud
- Initial host for data, including ‘orphan’ data
- Data are exposed to enable preservation and use of the data

Data Centres
- Ensure long term preservation of data, by adopting all data
- Add value by providing various high-level services

Data users
- Comply with PIC norms and expected behaviour
How does the PIC work?

Badging data

- Labels data as belonging to the PIC
 - Norms and expected behavior, both by users and providers
 - Makes rights of users and providers explicit
 - Puts contents as close as (legally) possible to public domain

- Makes (automated) searching for the data possible

- Badging tools incorporated in discovery metadata writing tools

- Logos in metadata link to norms and expected behavior:
Proposed Norms for PIC Users

• Formal scientific publication citation is desired and PIC users acknowledge authorship and co-authorship of materials that is used from PIC

• PIC users agree that they will also give appropriate recognition to the role of the PIC as a digital community resource

• PIC users agree that they will make reasonable and timely efforts to notify the relevant PIC contributors (or the PIC community more generally) about their use of specific digital materials from the PIC, and about any suspected significant errors, limitations, or other problems that they may have discovered in the course of their use of those materials

• PIC users acknowledge that they themselves are responsible for determining whether the PIC materials they use are of sufficient quality and appropriateness for their objectives. However the PIC badge is not a certification of quality

• PIC users agree that in all cases they will contribute back to the PIC any value-added data, information, or other digital content derived entirely or largely from PIC materials, with appropriate citation of and documentation about PIC and non-PIC inputs
Proposed Norms for PIC Data Providers

• PIC contributors acknowledge that their submitted materials are already in the public domain, or that they have clear rights to make these materials openly accessible through the PIC

• PIC contributors agree to label their contributions digitally with the “PIC badge”, which specifies rights of access and links back to this statement of norms, and agree to make these contributions accessible and searchable online

• PIC contributors agree to provide at least the minimum information about their contributed materials requested by the PIC

• PIC contributors agree that, if requested, they will make reasonable efforts to provide additional information about their contributed materials, e.g. to help document the quality of their submitted materials and to ensure their long-term usability.

• PIC contributors agree that they will make reasonable efforts to provide appropriate notification to the PIC community (e.g., through PIC interfaces) of any significant errors in their contributed materials or descriptions, if any are discovered after submission.
How does the PIC work?

Data centres or ‘data adopters’

- Long term preservation
- World Data System (WDS) requirements for certified data centres
- Continue to keep data accessible under same access rights
- Notify provider that data set is adopted
Who is leading the PIC?

- Committee on Data for Science & Technology (CODATA)
- IPY Data Management Subcommittee (also a CODATA TG)
- International Arctic Science Council (IASC)
- Scientific Committee on Antarctic Research (SCAR)
- International Polar Year International Program Office (IPY IPO)
- World Meteorological Organization (WMO)
- World Data System (WDS) Transition Team
- International Union of Geodesy and Geophysics (IUGG)
- Royal Netherlands Academy of Sciences
- Science Commons
- Association of Polar Early Career Scientists (APECS)
The PIC is operational

Launched at IPY Conference, Oslo, June 2010
The PIC is operational

Data are the common wealth of humanity — Adama Samassekou
Convener of the UN World Summit on the Information Society

Dataset Upload Form

Please complete the following information and upload your files:

First Name:

Last Name:

Phone:

Email:

Title: Dr

Country: Abkhazia

DataSet Title:

DataSet Abstract:
The PIC is operational

<table>
<thead>
<tr>
<th>Subject</th>
<th>AGRICULTURAL EQUIPMENT</th>
<th>FARM STRUCTURES</th>
<th>AGRICULTURAL PLANT SCIENCE</th>
<th>CROP/PLANT YIELDS</th>
<th>CROPPING SYSTEMS</th>
<th>IRRIGATION</th>
<th>PLANT BREEDING AND GENETICS</th>
<th>PLANT DISEASES/DISORDERS/PESTS</th>
<th>RECLAMATION/REVEGETATION/RESTORATION</th>
<th>WEEDS, NOXIOUS PLANTS OR INVASIVE PLANTS</th>
<th>ANIMAL COMMODITIES</th>
</tr>
</thead>
</table>

Please choose either a Creative Commons Waiver or a Creative Commons Attribution By License to acquire conditions of access to your data. Note all submissions are subject to agreement with the PIC norms.

Access Conditions:
- Creative Commons Waiver
- Creative Commons Attribution By License

Upload data files (You can upload up to 10 files. Each file must not exceed 10 Mb)

<table>
<thead>
<tr>
<th>File (1):</th>
<th>Choose file</th>
</tr>
</thead>
<tbody>
<tr>
<td>File (2):</td>
<td>Choose file</td>
</tr>
<tr>
<td>File (3):</td>
<td>Choose file</td>
</tr>
<tr>
<td>File (4):</td>
<td>Choose file</td>
</tr>
<tr>
<td>File (5):</td>
<td>Choose file</td>
</tr>
<tr>
<td>File (6):</td>
<td>Choose file</td>
</tr>
<tr>
<td>File (7):</td>
<td>Choose file</td>
</tr>
<tr>
<td>File (8):</td>
<td>Choose file</td>
</tr>
<tr>
<td>File (9):</td>
<td>Choose file</td>
</tr>
<tr>
<td>File (10):</td>
<td>Choose file</td>
</tr>
</tbody>
</table>

Data Regions:
- Antarctic
- Arctic
- Southern Ocean
- Antarctic and Arctic
- Antarctic and Southern Ocean
- Global

Submit will commit your files and metadata to the cloud. Please be sure you are ready to do so as the action cannot be undone without the aid of the site administrator.
The PIC is operational

Data are the common wealth of humanity — Adama Samassekou
Convener of the UN World Summit on the Information Society

Dataset Search and Retrieval Form

1. Retrieve all submissions made by a person "X".
 - First Name:
 - Last Name:
 - Search

2. Retrieve all data submitted by people from country "X".
 - Country: Please select a country
 - Search

3. Retrieve all data containing the title words "X".
 - Dataset Title:
 - Search
The PIC is operational

Dataset Search Results

To view the abstracts for the datasets you have retrieved click on the “abstract” hyperlink. To download dataset packages of interest click on the dataset “download” hyperlink.

Datasets meeting your criteria include:

1. UV radiation at Davis station summer 1999
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/ATMOSPHERE/ATMOSPHERIC_RADIATION/ULTRAVIOLET_RADIATION/measurements/12765585539000327z.zip
 Dataset Creator: Andrew Disdieren
 Email: andrew.disdieren@iae.cat.gov.au

2. Macquarie Island Celacanth Sightings and Strandings
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/BIOLOGICAL_CLASSIFICATION/ANIMALS/VERTEBRATES/FISH/ko rejoice/127662204517.zip
 Dataset Creator: Geoff Copson
 Email: geoff.copson@dsf.com.au

3. Ducks and Mallards of Macquarie Island
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/BIOLOGICAL_CLASSIFICATION/ANIMALS/VERTEBRATES/BIRDS/ko rejoice/127662204517.zip
 Dataset Creator: Knowles Kerr
 Email: t.kerr@atjkiprint.com.au

4. Modification of the type of dietary fat at an Antarctic station: impact on cardiovascular risk factors
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/HUMAN

5. Impact of changes in UV and visible radiation on the reflective properties of plant photosynthetic surfaces
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/BIOLOGICAL_CLASSIFICATION/PLANTS/201406/1275538552775.zip
 Dataset Creator: Simon Robinson
 Email: shareen@vueu.edu.au

6. Surface temperature, temperature-conductivity and conductivity-density relationships for marine-derived saline lake waters
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/AQUATIC ECOSYSTEMS/GEES/SHALE
 Dataset Creator: John Gibson
 Email: john.gibson@utas.edu.au

7. Surface temperature, temperature-conductivity and conductivity-density relationships for marine-derived saline lake waters
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/AQUATIC ECOSYSTEMS/GEES/SHALE
 Dataset Creator: John Gibson
 Email: john.gibson@utas.edu.au

8. Surface temperature, temperature-conductivity and conductivity-density relationships for marine-derived saline lake waters
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/AQUATIC ECOSYSTEMS/GEES/SHALE
 Dataset Creator: John Gibson
 Email: john.gibson@utas.edu.au

9. Surface temperature, temperature-conductivity and conductivity-density relationships for marine-derived saline lake waters
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/AQUATIC ECOSYSTEMS/GEES/SHALE
 Dataset Creator: John Gibson
 Email: john.gibson@utas.edu.au

10. Surface temperature, temperature-conductivity and conductivity-density relationships for marine-derived saline lake waters
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/AQUATIC ECOSYSTEMS/GEES/SHALE
 Dataset Creator: John Gibson
 Email: john.gibson@utas.edu.au

11. Surface temperature, temperature-conductivity and conductivity-density relationships for marine-derived saline lake waters
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/AQUATIC ECOSYSTEMS/GEES/SHALE
 Dataset Creator: John Gibson
 Email: john.gibson@utas.edu.au

12. Surface temperature, temperature-conductivity and conductivity-density relationships for marine-derived saline lake waters
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/AQUATIC ECOSYSTEMS/GEES/SHALE
 Dataset Creator: John Gibson
 Email: john.gibson@utas.edu.au

13. Surface temperature, temperature-conductivity and conductivity-density relationships for marine-derived saline lake waters
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/AQUATIC ECOSYSTEMS/GEES/SHALE
 Dataset Creator: John Gibson
 Email: john.gibson@utas.edu.au

14. Surface temperature, temperature-conductivity and conductivity-density relationships for marine-derived saline lake waters
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/AQUATIC ECOSYSTEMS/GEES/SHALE
 Dataset Creator: John Gibson
 Email: john.gibson@utas.edu.au

15. Ice sheet topography and surface characteristics in eastern Wilkes Land, East Antarctica
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/CYSPHERO/GLACIERS/ICE
 Dataset Creator: Ian Goodall
 Email: ian.goodall@newcastle.edu.au

16. Ice sheet topography and surface characteristics in eastern Wilkes Land, East Antarctica
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/CYSPHERO/GLACIERS/ICE
 Dataset Creator: Ian Goodall
 Email: ian.goodall@newcastle.edu.au

17. Ice sheet topography and surface characteristics in eastern Wilkes Land, East Antarctica
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/CYSPHERO/GLACIERS/ICE
 Dataset Creator: Ian Goodall
 Email: ian.goodall@newcastle.edu.au

18. Ice sheet topography and surface characteristics in eastern Wilkes Land, East Antarctica
 Download: https://www.nerc.ac.uk/ERC/Projects/FCLOUD/dataset/EARTH/SCIENCE/CYSPHERO/GLACIERS/ICE
 Dataset Creator: Ian Goodall
 Email: ian.goodall@newcastle.edu.au

Data are the common wealth of humanity — Adama Samassekou
Convener of the UN World Summit on the Information Society
Can you help?

• Inputs on PIC vision, design, community norms (see PIC web site)

• Contributions to key PIC elements

• Contributions of important polar data and information resources

• Outreach to the broader community

Thanks!

http://www.polarcommons.org