Data Erasing and Recycling of Optical Disks

Toyohisa Fujita^a, Gjergj Dodbiba^a, Kenji Murata^b and Takao Ihashi^c

a: The University of Tokyo, Geosystem Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

b: Nippon Koki co., Ltd.,Fukushima, 961-8686 Japan

c: Bifrostec Inc., Tokyo 101-0051, Japan

Recorded media

- Floppy disk
- MO(Magneto Optical Disk)
- Memory card, Memory stick etc.
- CD-R (Compact Disk Recordable)
- CD-RW(Compact Disk ReWritable)
- CD-ROM(Compact Disk Read Only Memory)
- DVD-R(Digital Versatile Disk Recordable)
- DVD-RW(Digital Versatile Disk ReWritable)
- DVD-ROM(Digital Versatile Read Only Memory)
- DVD-RAM(Digital Versatile Disk Random Access Memory)

Relationship between CD, DVD material recycling and information data erasing

- Data erasing mechanically in private
- \rightarrow Mechanically crushing by scissors and hand
- easy but difficult to material recycling and unsafe for person and data erasing
 - Data erasing in office and general consumer
- \rightarrow Utilization of recycle box to carry recycle company
 - 1. Observation of box by GPS and RFID
- 2. Importance of complete data erasing and new material recycling method

1.Current Situation Optical disk World Production of Optical Disk (FY 2005): ca. 20 billion disks, of which CD-R represented more than 50 %.

Production in 2003, November, (unit: 1 million/year)

	CD-R	CD-RW	DVD-R	DVD-RW
Japan	400	28	115	41
World	6940	327	345	82

(Source: Japan recording-media industries association)

Fig.2 Production ratio of CD-R in 2003.

Cross section view of CD-R & DVD-R (Source: Rikoh HP)

Disk diameter : 12cm ,

Disk thickness:1.2mm

Optical disk demand in Japan is 600 million disks One disk (both CD,DVD) contain:

15g polycarbonate and 15 mg silver (layer thickness 70-90nm)

polycarbonate $\cdot \cdot \cdot 90000$ to 1.8 billion/year (200/kg) Silver $\cdot \cdot \cdot 9 t/year$ (50/g) in 2007 October

Fig. Life cycle of CD-R and DVD-R.

•Recycling System:Production and Collection sites

Producer. Own recycling by production company

• • • Disk to disk recycling

Start Lab in Japan

- • Recycling of unprinted disk in the production
- Coffector. Recycling of discarded disk from company (ca. 40%)
- • Cascade recycling of polycarbonate to use as one side board (mount) of disk

ORIENT INSTRUMENT COMPUTER CO.,LTD

 \rightarrow Recycle box from the consumers • • •

Safety datum erase is important No recycling of discarded disk from general consumer (ca. 60%)

• • Incineration or landfill as municipal waste

Safety recycle box to carry used CD & DVD including data information

- GPS (Geographical position system)
- RFID (Radio Frequency Identification) is attached on recycle box

Motivation for collection and erasure of the recorded information to general consumers

Investigation of the collection system of optical disk

- •Motivation for bring the wasted disks to the collection place Deposit, Point return, Exchange to new disk, Lottery, Recycle box
 - Collection sites:

Electric big store, Convenience store, At house

• Erasure method of the recorded information

By users, Data-crusher Machine

Evaluation method of the recycling efficiency

- \rightarrow Merit and demerit
- \rightarrow Weight estimation by questionnaire datum
- \rightarrow Estimation of best collection system

•Evaluation of the collecting system

1. Merit for system: *p* factors, Demerit for system: *q* factors, Weights are: $m_1, m_2, \dots, m_n, d_1, d_2, \dots, d_n$

$$\sum_{i=1}^{p} m_i = 100 , \qquad \sum_{j=1}^{q} d_q = 100$$

2. Merit for collection system: m_{ti} , Demerit for collection system: d_{ti} Weights are: m_{t1} , $\cdot \cdot \cdot , m_{tp}, d_{t1}$, $\cdot \cdot \cdot , d_{tq}, m_{t1} < m_{1}$

Weight of collection system: r_t

 R_{max} is shown in the next equation. Here, 15 systems are planed.

$$r_{max} = MAX(r_1:r_{15})$$

•Example 1

		R ₁	• • •	R _t	• • •
m_1	M ₁	m_{11}	• • •	m_{t1}	• • •
• • •	• • •	• • •	• • •	• • •	• • •
m_p	M _p	m_{1p}	• • •	${ m m}_{ m tp}$	• • •
100	Totalmerit				
d_1	D ₁	$d_{\!11}$	• • •	d_{t1}	• • •
• • •	• • •	• • •	• • •	• • •	• • •
d_q	D _q	$d_{l q}$	• • •	\mathbf{d}_{tq}	• • •
100	Total dem erit				
100	Totalweight	Ą	• • •	Æ	• • •

• The comparison of several collection methods for optical disks

		Electric		Convenien		Electric		Electric		Convenien		Electric		Convenien		at	
	Collection place	Big-stones		cestore !		Big-stores		Big-stores ce store		Big-stores		ce store		house			
	System at the collection place	Deposit		syste	m	Point back		Exchange			D raw i		ng bts		Box		
		by		by		by		by		by		by		by			
		m ys	Mac	m ys	Mac	mys	Mac	mysel	Mac	m ys	Mac	mys	Mac	m ys	Mac	Machi	
	Erasing of recorded informations	e∦f	hine	e∄	h'ne	e∦f	hine	f	hine	e∦f	h'ne	e∦f	hine	e∦f	h'ne	ne	
	Number of collection methods	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
14	Protection of privite information	11	11	11	11	11	11	11	11	11	11	11	11	11	11	2.88	
10	Benefit of consum ers	2.56	2.56	2.56	2.56	5.11	5.11	10.2	10.2	10.2	10.2	5.11	5.11	5.11	5.11	0	
13	Safety of mechanical crushing	0	12.9	0	12.9	0	12.9	0	12.9	0	12.9	0	12.9	0	12.9	12.9	
14	Motive of consumers to recycle	11.1	11.1	11.1	11.1	8.33	8.33	11.7	11.7	11.7	11.7	4.44	4.44	4.44	4.44	1.67	
14	Advertizem ent of recycling	6.94	6.94	6.94	6.94	6.94	6.94	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	6.94	
8.7	Totalcollected amount	3.82	3.82	5.21	5.21	3.82	3.82	6.6	6.6	7.29	7.29	6.6	6.6	7.29	7.29	1.04	
8.7	Collected amount at one place	8.68	8.68	0.4	0.4	8.68	8.68	8.68	8.68	0.4	0.4	8.68	8.68	0.4	0.4	0	
17	Feasibility of recycling	13	17.4	13	17.4	13	17.4	13	17.4	13	17.4	13	17.4	13	17.4	17.4	
100	Totalpoint of m erit	57.1	74.3	50.2	67.4	56.9	74.1	75	92.2	67.4	84.6	62.7	79.9	55.1	72.3	42.8	
10	Necessity to keep wastes	0	0	0	0	0	0	5.08	5.08	5.08	5.08	0	0	0	0	10.2	
9.8	Payment by consumers	4.92	4.92	4.92	4.92	0	0	0	0	0	0	0	0	0	0	9.85	
12	Cost to carry wastes	12.4	12.4	2.65	2.65	12.4	12.4	12.4	12.4	2.65	2.65	12.4	12.4	2.65	2.65	0	
12	Management cost to erase datum	9.02	0	9.02	0	9.02	0	9.02	0	9.02	0	9.02	0	9.02	0	0	
6.3	Cost to make recycling system	6.35	6.35	6.35	6.35	3.17	3.17	3.17	3.17	3.17	3.17	6.35	6.35	6.35	6.35	3.17	
13	Cost by recycling com pany	6.35	6.35	6.35	6.35	8.47	8.47	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	0	
13	Competition with cost of overseas	12.7	12.7	12.7	12.7	0	0	0	0	0	0	0	0	0	0	0	
13	Energy to collect the wastes	4.23	4.23	8.47	8.47	4.23	4.23	4.23	4.23	8.47	8.47	4.23	4.23	8.47	8.47	12.7	
11	Costofmachine to erase datum	0	11.1	0	11.1	0	11.1	0	11.1	0	11.1	0	11.1	0	11.1	11.1	
100	Totalpotin to demerit	56	58.1	50.5	52.5	37.3	39.4	46.6	48.7	41.1	43.2	44.7	46.8	39.2	41.3	47	
	Totalamount	1	16	-0	15	20	35	28	44	26	41	18	33	16	31	-4	

Erasing data prior to recycling CD and DVD

- CD: Data crusher is an effective method for erasing data from CD.
- DVD:

Crushing by hand or scissors Mechanical crushing Microwave heating Electrical crushing in water Thermal heating Explosion crushing in water

Recycling of polycarbonate and silver

Silver is leached in HNO₃ solution and electro wining.

After Polycarbonate is crushed, pellet is produced.

1. CD Mechanical crushing

Data crusher

After CD-R passed through the data crusher, it is immersed into 8 mol/L HNO₃ solution. \rightarrow Silver is dissolved completely after 2 minutes.

2. DVD

1. Mechanical crushing

Data crusher is not able to erase data from DVD because the recorded layer is sandwitched by 0.6 mm thickness of 2 polycarbonate disks. Therefore, the DVD was cut 5 pieces and

immersed into 8 mol/L HNO₃ solutior

 \rightarrow It is difficult to dissolve the Ag layer.

2. Microwave treatment

500W microwave was applied to DVD for 3 seconds.

 \rightarrow It is easy to dissolve Ag layer of DVD in 8 mol/l HNO₃ solution for 2 minutes.

3. Pulse electrical crushing in water

(f) Im p i ise i igi uo itage ge i e rator.

50-100kV, 1000A/μ s **E**=ΣVIΔt

4. Thermal Treatment in oven

110-130℃ for 2-3 minutes

5. Roll mill of high pressure

Roll mill to split DVD

After HNO₃ leaching

Roll mill to split DVD by applying pressure

Several MPa to100MPa

6. Explosion in Water

blasting powder · · ·
High explosive 1g/100 DVD
Bubble detached the DVD
plates
6000-7000m/s, several 10GPa

Estimation of DVD crushing methods

Recycling

of materials

(Ag, Polycarbonate)

Environmental friendly

Estimation of PC recycling from DVD by LCA

Conclusion

 Purpose→Complete safety data erasing and material recycling of CD-R,CD-RW and DVD-R, DVD-RW

Optimum Collection method and data erasing
 Company consumer→safety with RFID of recycle box
 The effective methods for data erasing → the explosion in water treatment of recycle box

- General consumer→At the electric big-store to exchange the old CD and DVD with new ones. The data erasing for themselves by a roll mill installed in the store.
- Recycling company: Silver leaching by nitric acid and PC pellet production
- Producer→Cascade recycling of polycarbonate as disk mount
- 2. LCA for recycling

Environmental burden decreases in larger material recycling comparing with small recycling rate.