Life Cycle Assessment: A Tool for Evaluating and Comparing Different Treatment Options for Plastic Wastes

- G. Dodbiba ¹, K.Takahashi ¹, T. Furuyama ², J. Sadaki ¹, T. Kamo ³, and T. Fujita ¹
- 1. Department of Geosystem Engineering, The University of Tokyo, Japan
- 2. Department of Earth Resource Engineering, Kyushu University, Japan
- 3. National Institute of Advance Industrial Science and Technology, Japan

Outline

- 1. LCA Methodology (ISO 14040)
- 2. LCA of Plastic Wastes from Discarded TV Sets
- 3. Concluding Remarks

1. LCA Methodology (ISO 14040)

- 2. LCA of Plastic Wastes from Discarded TV Sets
- 3. Concluding Remarks

... to evaluate or compare the life cycle of "products"

Life-Cycle Stages and Boundaries

(**Source**: *EPA*, 1993)

Methodology: Life Cycle Assessment, (ISO 14040)

... to evaluate and compare different recycling options for <u>plastic wastes</u> from old TV sets in context of LCA

Compositions of a TV Set (weight %)

(Source: O. Murakami, Mitsubishi Elec. ADVANCE, pp. 6-9, 2001).

Conventional Recycling System for TV sets

Objective

... to compare two different recycling options for <u>plastic wastes</u> from old TV sets in context of <u>LCA</u>.

Option 1: Incineration of plastics for energy recovery (also known as thermal recycling)

Option 2: Sorting plastics for mechanical recycling (also know as material recycling)

Outline

1. LCA Methodology (ISO 14040)

2. LCA of Plastic Wastes from Discarded TV Sets

3. Concluding Remarks

Methodology: Life Cycle Assessment, (ISO 14040)

(Source: Consoli et.al., 1993)

Phase 1 of LCA: Goal Definition and Scope

- a. Subject of the study are plastic wastes from old TV sets (display: 25", weight = 30 kg), which contain:
 - 1. PS (6.0 wt%, i.e. 1.80 kg),
 - 2. PVC (3.5 wt%, i.e. 1.05 kg),
 - **3. PE** (1.0 wt%, i.e. 0.30 kg).
- b. Functional unit: is defined as 1.8 million TV sets per year, over a period of 10 years.

Life-cycle of plastics for TV sets

Methodology: Life Cycle Assessment, (ISO 14040)

(Source: Consoli et.al., 1993)

Phase 2 of LCA: Inventory analysis a) Data collection

The data of the processes, namely:

- production of PS,
- 2. production of PVC,
- 3. production of PE,
- 4. production of electricity,
- 5. production of a TV set,

were from the LCA database of the Japan Environmental Management Association for Industry (JEMAI).

Phase 2 of LCA: Inventory analysis a) Data collection

Option 1: Incineration of 1 kg plastic material

Energy generated:

PS - 9,604 kcal/kg

PVC - 4,300 kcal/kg

PE - 11,140 kcal/kg

Source: K. Krekeler et al., Kunstsoffe, 55/10, pp. 758, 1965

Emission:

2,640 g CO₂ /kg

Source: Ministry of Environment of Japan, Guidelines, 2004

Option 2:

Separation of plastic wastes prior to mechanical recycling

Phase 2 of LCA: Inventory analysis a) Data collection

Option 2: Separation of plastic wastes (by combining triboelectric separation and air tabling)

Energy: 0. 74 kWh/kg

Triboelectric separator 0.04 kWh/kg

Air table 0.66 kWh/kg

Size reduction 0.02 kWh/kg

Sieving 0.02 kWh/kg

Recovery of products: 67 %

Grade of products: > 95 %

Phase 2 of LCA: Inventory analysis b) Theoretical calculations

g is the vector of the environmental interventions

the matrix **A** represents the flow of products and materials

$$[g] = [B] \times [A^{-1}] \times [f]$$

the matrix **B** represents the flow of environmental loads

the vector frepresents a special process where the functional unit is an output

Steps to be followed in theoretical calculation:

- 1. Calculate the inverse of matrix of A (i.e. A-1)
- 2. Calculate the inventory vector *g*

Methodology: Life Cycle Assessment, (ISO 14040)

Phase 3 of LCA: Impact assessment

The categories of the environmental impacts:

a) Abiotic resources:

ADP (in kg Sb eq.)

b) Global warming:

GWP (in kg CO_2 eq.)

Phase 3 of LCA: Impact assessment a) Depletion of Abiotic Resources, (ADP)

Phase 3 of LCA: Impact assessment a) Depletion of Abiotic Resources, (ADP)

Phase 3 of LCA: Impact assessment b) Global Warming Potential (GWP)

Phase 3 of LCA: Impact assessment b) Global Warming Potential (GWP)

Methodology: Life Cycle Assessment, (ISO 14040)

(Source: Consoli et.al., 1993)

Phase 4 of LCA: Main Results Environmental Impact

Outline

- 1. LCA Methodology (ISO 14040)
- 2. LCA of Plastic Wastes from Discarded TV Sets

3. Concluding Remarks

- The *energy recovery* (*option 1*) and the *mechanical recycling* (*option 2*) of **plastic wastes** from the discarded TV sets were compared in the context of **LCA**.
- The energy recovery is an treatment option that generated more energy due to the incineration of plastic wastes. Nevertheless, this option also uses more resources and emits a larger quantity of greenhouse gases.
- The separation of plastics for <u>mechanical recycling</u> is more effective alternative, because it consumes fewer energy and resources, as well as has a lower environmental impact on global warming.

Conventional Recycling System for TV sets

Source: Matsushita Eco Technology Center (METEC)

Available from internet: http://panasonic.co.jp/eco/en/metec/tv/material2-1.html

Three alternatives are being considered when dealing with plastic wastes:

- 1. energy recovery (also known as thermal recycling), i.e. direct incineration of plastic wastes for energy recovery
- 2. *mechanical recycling* (also known as material recycling), i.e. the method by which plastic wastes are recycled into new resources without affecting the basic structure of the material;
- 3. *feedstock recycling* (also known as chemical recycling), i.e. the technique that break down polymers into their constituent monomers, which in turn can be used again in refineries or petrochemical and chemical production.

Required Purity of Sorted Plastics for Reuse

(courtesy of KINKI KOGYO Co. Ltd., Japan)

- Reuse of plastics in circulating system as low grade plastics : > 95.0 %
- Reuse of plastics in circulating system as virgin plastics: > 99.5 %
- Reuse of plastics for agricultural, horticultural industry, etc.: > 99.0 %
- Use of plastics as oxidant in blast furnaces : <1.0 % (PVC impurity)

Life Cycle Assessment Framework

(Source: LCA, ISO 14040)

Bond's Method: Size-reduction

$$W_i = 13.81 \text{ kWh/t}$$

 $D_P = 2.63 \text{ mm}$
 $D_F = 5.00 \text{ mm}$

Production of 1 kg PS

			Production
Category	Flow	Substances	of PS
Economic Output / Unit Process	$a_{1,1}$	PS, (kg)	1
Economic inflow	$b_{1,1}$	Energy, (kcal)	4567.1
	$a_{4,1}$	Electric power, kWh	0.133
	$b_{3,1}$	Naphtha, (kg)	0.962
	$b_{4,1}$	LPG, (kg)	0.014
	$b_{5,1}$	NGL, (kg)	0.025
	$b_{6,1}$	Oxygen gas, (kg)	0.012
Environmental load	$b_{12,1}$	$CO_{2}(g)$	1387
substance (atmosphere)	$b_{13,1}$	CH_4 , (g)	0.031
	$b_{15,1}$	N_2O , (g)	0.0002
	$b_{17,1}$	NO_x , (g)	1.24
	$b_{18,1}$	SO_x , (g)	0.262
	$b_{\mathit{19,1}}$	Dust, (g)	0.0349
	$b_{20,1}$	HCl, (g)	0.0006
Environmental load	$b_{22,1}$	COD, (mg)	64.8
substance (water quality)	$b_{23,1}$	T-P, (mg)	4.2
	$b_{24,1}$	T-Ni, (mg)	119
	$b_{25,1}$	Phenol, (mg)	0.1

Production of 1 kg PVC

Category	Flow	Substances	Production of PVC
Economic Output / Unit Process	$a_{2,2}$	PVC, (kg)	1
Economic inflow	$b_{1,2}$	Energy, (kcal)	4937.9
	$a_{4,2}$	Electric power, kWh	0.29
	$b_{3,2}$	Naphtha, (kg)	0.435
	$b_{4,2}$	LPG, (kg)	0.009
	$b_{5,2}$	NGL, (kg)	0.016
	$b_{6,2}$	Oxygen gas, (kg)	0.124
Environmental load	$b_{12,2}$	$CO_{2}(g)$	1105
substance (atmosphere)	$b_{15,2}$	N_2O , (g)	0.0002
	$b_{17,2}$	NO_x , (g)	1.01
	$b_{18,2}$	SO_x , (g)	0.313
	$b_{19,2}$	Dust, (g)	0.0296
	$b_{20,2}$	HCl, (g)	0.00082
	$b_{21,2}$	CO(g)	0.00624
Environmental load	$b_{22,2}$	COD, (mg)	268
substance (water quality)	$b_{23,2}$	T-P, (mg)	7.7
	$b_{24,2}$	T-Ni, (mg)	152
	$b_{25,2}$	Phenol, (mg)	1.43

Production of 1 kg PE

			Production of
Category	Flow	Substances	PE
Economic Output / Unit Process	$a_{3,3}$	PE, (kg)	1
Economic inflow	$b_{1,3}$	Energy, (kcal)	3540.8
	$a_{4,3}$	Electric power, kWh	0.08
	$b_{3,3}$	Naphtha, (kg)	0.959
	$b_{4,3}$	LPG, (kg)	0.02
	$b_{5,3}$	NGL, (kg)	0.035
Environmental load	$b_{12,3}$	$CO_{2}(g)$	980.35
substance (atmosphere)	$b_{13,3}$	CH_4 , (g)	5
	$b_{15,3}$	N_2O , (g)	0.2
	$b_{17,3}$	NO_x , (g)	0.942
	$b_{18,3}$	SO_x , (g)	0.217
	$b_{19,3}$	Dust, (g)	21
	$b_{20,3}$	HCl, (g)	0.4
Environmental load	$b_{22,3}$	COD, (mg)	34
substance (water quality)	$b_{23,3}$	T-P, (mg)	3
	$b_{24,3}$	T-Ni, (mg)	94
	$b_{25,3}$	Phenol, (mg)	0.1

Production of 1 kWh Electricity

Category	Flow	Substance	Amount
Economic Output	$a_{4,4}$	Electricity, (kWh)	1
Economic inflow	$b_{4,4}$	LPG (kg)	0.00172
	$b_{7,4}$	Coal (kg)	0.05721
	$b_{8,4}$	Natural gas (kg)	0.0007025
	$b_{9,4}$	Petroleum (L)	0.01399
	$b_{10,4}$	Crude oil (L)	0.01239
	$b_{11,4}$	LNG (kg)	0.0491
Environmental load substance (atmosphere)	$b_{12,4}$	CO ₂ (g)	353
	$b_{14,4}$	HCF (g)	0.000013
	$b_{15,4}$	$N_2O(g)$	0.0021
	$b_{16,4}$	$SF_6(g)$	0.000044
	$b_{17,4}$	$NO_{x}(g)$	0.18
	<i>b18,4</i>	$SO_{x}(g)$	0.14
	$b_{19,4}$	Dust (g)	0.0074
Environmental load substance (water quality)	$b_{22,4}$	COD, (mg)	0.15

Production of a TV set

(Sources: a. JEMAI-LCA On-line Database; b. Murakami, 2001)

Category	Flow	Substance	Amount
Economic output	$a_{5,5}$	TV set, (No.)	1
Economic inflow	$a_{1,5}$	PS, (kg)	1.80
	$a_{2,5}$	PVC, (kg)	1.05
	$a_{3,5}$	PE, (kg)	0.30
	$a_{4,5}$	Electricity, (kWh)	9.4
Environmental load substance (atmosphere)	$b_{12,5}$	$\mathrm{CO}_{2}\left(\mathrm{g}\right)$	10830
	$b_{17,5}$	$NO_{x}(g)$	8.49
	$b_{18,5}$	$SO_{x}(g)$	32.54

Matrix B of Environmental interventions

	Flow	Flow p - Process vector							
		1	2	3	4	5	6	7	8
		Production of PS (1 kg)	Production of PVC (1 kg)	Production of PE (1 kg)	Production of electricity	Production of TV set	Use of TV set (unit/yrs)	Incineration of Plastics	Recovery of plastics
l	Energy from resources, (kcal)	$-b_{I,I}$	-b _{1,2}	-b _{1,3}	0	0	0	0	0
}	Energy from combustion, (kcal)	0	0	0	0	0	0	$c \cdot d(1-r) \frac{\left(a_{1,5} \cdot H_1 + a_{2,5} \cdot H_2 + a_{3,5} \cdot H_3\right)}{a_{5,5}}$	0
3	Naphtha, (kg)	$-b_{3,1}$	$-b_{3,2}$	-b _{3,3}	0	0	0	0	0
ı	Liquefied petroleum gas, (LPG), (kg)	-b _{4,1}	-b _{4,2}	-b _{4,3}	$-b_{4,4}$	0	0	0	0
;	Natural gas liquid (NGL), (kg)	-b _{5,1}	-b _{5,2}	-b _{5,3}	0	0	0	0	0
5	Oxygen gas, (kg)	-b _{6,1}	$-b_{6,2}$	0	0	0	0	0	0
<u></u>	Coal, (kg)	0	0	0	-b _{7,4}	0	0	0	0
3	Natural gas, (kg)	0	0	0	$-b_{8,4}$	0	0	0	0
)	Petroleum, (L)	0	0	0	$-b_{9,4}$	0	0	0	0
10	Crude oil, (L)	0	0	0	$-b_{10,4}$	0	0	0	0
1	Liquefied natural gas (LNG), (kg)	0	0	0	-b _{11,4}	0	0	0	0
12	CO ₂ , (g)	$b_{I2,I}$	$b_{12,2}$	$b_{12,3}$	$b_{12,4}$	$b_{12,5}$	0	$b_{12.8} \left[\frac{(a_{1.5} + a_{2.5} + a_{3.5})d(1 - c r)}{a_{5.5}} \right]$	0
13	CH ₄ , (g)	$b_{13,1}$	0	$b_{13,3}$	0	0	0	0	0
4	HCF, (g)	0	0	0	$b_{14,4}$	0	0	0	0
15	N_2O , (g)	$b_{15,1}$	$b_{15,2}$	$b_{15,3}$	$b_{15,4}$	0	0	0	0
6	SF ₆ , (g)	0	0	0	$b_{16,4}$	0	0	0	0
17	NO_x , (g)	$b_{17,1}$	$b_{17,2}$	$b_{17,3}$	$b_{17,4}$	$b_{17,5}$	0	0	0
8	SO_x , (g)	$b_{18,1}$	$b_{18,2}$	$b_{18,3}$	$b_{18,4}$	$b_{18,5}$	0	0	0
9	Dust, (g)	$b_{19,1}$	$b_{19,2}$	$b_{19,3}$	$b_{19,4}$	0	0	0	0
20	HCl, (g)	$b_{20,1}$	$b_{20,2}$	$b_{20,3}$	0	0	0	0	0
21	CO, (g)	0	$b_{2I,2}$	0	0	0	0	0	0
!2	Chemical Oxygen Demand (COD), (mg)	$b_{22,1}$	$b_{22,2}$	$b_{22,3}$	$b_{22,4}$	0	0	0	0
23	T-P, (mg)	$b_{23,1}$	b _{23,2}	$b_{23,3}$	0	0	0	0	0
24	T-Ni, (mg)	$b_{24,I}$	$b_{24,2}$	$b_{24,3}$	0	0	0	0	0

Demand vector, f

	Flows	Demand vector, f
1	PS, (kg)	0
2	PVC, (kg)	0
3	PE, (kg)	0
4	Electricity, (kWh)	0
5	TV set, (No)	0
6	Provision of colour TV sets, (years)	f_u
7	Plastics collected for incineration, (kg)	0
8	Plastics collected for separation, (kg)	0

Technological Matrix, A

Flow						Vector process - p		
	1	2	3	4	5	6	7	8
	Production of PS (1 kg)	Production of PVC (1 kg)	Production of PE (1 kg)	Production of electricity	Production of TV set	Use of TV set	Separation of plastics for mechanical recycling	Incineration of plastics for energy recovery
PS, (kg)	$a_{I,I}$	0	0	0	-a _{1,5}	0	$M_{c}\left(\frac{a_{1,5}}{a_{1,5} + a_{2,5} + a_{3,5}}\right)$	0
PVC, (kg)	0	$a_{2,2}$	0	0	-a _{2,5}	0	$M_{c}\left(\frac{a_{2,5}}{a_{1,5} + a_{2,5} + a_{3,5}}\right)$	0
PE, (kg)	0	0	$a_{3,3}$	0	-a _{3,5}	0	$M_{c}\left(\frac{a_{3,5}}{a_{1,5} + a_{2,5} + a_{3,5}}\right)$	0
Electricity, (kWh)	-a _{4,1}	-a _{4,2}	-a _{4,3}	a _{4,4}	-a _{4,5}	0		$1.16 \cdot 10^{-3} \left[c \cdot d \left(1 - r \right) \frac{\left(a_{1,5} \cdot H_1 + a_{2,5} \cdot H_2 + a_{3,5} \cdot H_3 \right)}{a_{5,5}} \right]$
TV set, (No)	0	0	0	0	$a_{5,5}$	- d	0	0
astics collected for separation, (kg)	0	0	0	0	0	$M_{in} = \frac{\left(a_{1,5} + a_{2,5} + a_{3,5}\right) \cdot d \cdot c}{a_{5,5}}$	$-\frac{(a_{1,5}+a_{2,5}+a_{3,5})\cdot d\cdot c}{a_{5,5}}$	0
astics collected for incineration, (kg)	0	0	0	0	0	$\frac{\left(a_{1,5} + a_{2,5} + a_{3,5}\right) \cdot d \cdot (1-c)}{a_{5,5}}$	$\frac{(a_{1,5} + a_{2,5} + a_{3,5})c \cdot d(1-r)}{a_{5,5}}$	$-\frac{\left(a_{1,5}+a_{2,5}+a_{3,5}\right)d\left(1-c\ r\right)}{a_{5,5}}$
rovision of TV sets, (years)	0	0	0	0	0	1	0	0

Structure of LCA model

OUTPUT

After choosing the *FINAL DEMAND* of the product, the simplest *UNIT PROCESS* can be written as follows:

 $(environmental\ flow) \times (scaling\ parameter) = (environmental\ intervention)$

Linear programming

 $\begin{cases} (a_{11} \times s_1) + (a_{12} \times s_2) + \dots + (a_{1j} \times s_j) = f_1 \\ (a_{21} \times s_1) + (a_{22} \times s_2) + \dots + (a_{2j} \times s_j) = f_2 \\ \vdots \end{cases}$

]:

$$(a_{i1} \times s_1) + (a_{i2} \times s_2) + \dots + (a_{ij} \times s_j) = f_j$$

 $\begin{cases} (b_{11} \times s_1) + (b_{12} \times s_2) + \dots + (b_{1j} \times s_j) = g_1 \\ (b_{21} \times s_1) + (b_{22} \times s_2) + \dots + (b_{2j} \times s_j) = g_2 \end{cases}$

]:

 $(b_{k1} \times s_1) + (b_{k2} \times s_2) + \dots + (b_{kj} \times s_j) = g_j$

(Heijung et.al, 2002)

$$\forall i: \sum_{j} a_{ij} s_{j} = f_{i}$$

$$\begin{cases} \forall k : \sum_{j} b_{kj} s_{j} = g_{k} \end{cases}$$

Product flow,

Scaling parameter,

Demand,

Environmental flow,

b

Environmental intervention,

g

Equations can be written in terms of matrixes

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1j} \\ a_{21} & a_{22} & \cdots & \cdots & a_{2j} \\ \vdots & & \ddots & & \vdots \\ a_{i1} & a_{i2} & \cdots & \cdots & a_{ij} \end{bmatrix} \times \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ \vdots \\ s_j \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ \vdots \\ f_j \end{bmatrix}$$

$$\begin{cases}
 \begin{pmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1j} \\ a_{21} & a_{22} & \cdots & \cdots & a_{2j} \\ \vdots & & \ddots & & \vdots \\ a_{i1} & a_{i2} & \cdots & \cdots & a_{ij} \end{pmatrix} \times \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ \vdots \\ s_j \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ \vdots \\ f_j \end{pmatrix}$$

$$\begin{pmatrix} b_{11} & b_{12} & \cdots & \cdots & b_{1j} \\ b_{21} & b_{22} & \cdots & \cdots & b_{2j} \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & & \vdots \\ b_{k1} & b_{k2} & \cdots & \cdots & b_{kj} \end{pmatrix} \times \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ \vdots \\ s_j \end{pmatrix} = \begin{pmatrix} g_1 \\ g_2 \\ \vdots \\ \vdots \\ g_k \end{pmatrix}$$

Technology matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1j} \\ a_{21} & a_{22} & \cdots & \cdots & a_{2j} \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & \cdots & a_{ij} \end{pmatrix}$$

Intervention matrix

$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & \cdots & b_{2j} \\ b_{21} & b_{22} & \cdots & \cdots & b_{2j} \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ b_{k1} & b_{k2} & \cdots & \cdots & b_{kj} \end{bmatrix}$$

$$g = \begin{pmatrix} g_1 \\ g_2 \\ \vdots \\ g_j \end{pmatrix}$$

Linear programming / Matrix manipulation

(Heijung et.al, 2002)

Final demand vector

Inverse matrix of technology matrix A

Scaling vector

$$[A] \times [s] = [f]$$

$$J = \lfloor f \rfloor$$

$$[B] \times [s] = [g]$$

$$[s] = [A^{-1}] \times [f]$$

$$[g] = [B] \times [s]$$

Inventory vector

Solution:

$$[g] = [B] \times [A^{-1}] \times [f]$$

Environmental intervention matrix

LCI Results – g vector

The outcome of the inventory analysis was the vector g, which is a list of the quantities g_i of pollutants released to the environment and the amount of energy and materials consumed during the life-cycle of plastics for TVs production (Matrix \mathbf{B}), i.e.:

$$g = \begin{pmatrix} g_1 \\ \vdots \\ g_n \end{pmatrix}$$
 for $i = 1, 2, ..., n$

Phase 3 of LCA: Impact assessment

The categories of the environmental problems:

- a) Resource depletion/Abiotic depletion ADP (in kg Sb eq.)
- b) Global warming **GWP** (in kg CO₂ eq.)
- c) Acidification, AP (in kg SO₂ eq./kg)
- d) Photo-oxidant formation, **POCP** (in kg C₂H₄ eq./kg)
- e) Eutrophication, EP (in kg PO₄ eq./kg)
- f) Human toxicity, HTP (in kg 1,4-DCB eq./kg)

How to calculate the environmental impact?

The impact indicator I_j of each category was calculated after all the environmental loads g_i within a category were characterized and aggregated using the following equations,

Results of LCI, g vector

 $I_{i(j)} = g_i \times k_{i(j)}$, i = 1, 2, ..., n

$$I_j = \sum_{i(j)}^n I_{i(j)}$$
, $j = 1, 2, ..., q$

Characterization factors, k_{i(i)}

	•			Impac	t indicators		
	Flow	ADP,	GWP,	AP,	POCP,	EP,	НТР,
		(kg Sb	(kg CO ₂	(kg SO ₂	(kg C ₂ H ₄	(kg PO ₄	(kg 1,4-DCB eq./kg)
		eq./kg)	eq./kg)	eq./kg)	eq./kg)	eq./kg)	
Resc	ources						•
13	Naphtha	0.0201	-	-	-	-	-
4	LPG	0.0187	-	-	-	-	-
5	NGL	0.0187	-	-	-	-	-
7	Coal	0.0067	-	-	-	-	-
18	Natural gas	0.0187	-	-	-	-	-
19	Petroleum	0.0201	-	-	-	-	-
110	Crude oil	0.0201	-	-	-	-	-
111	LNG	0.0187	-	-	-	-	-
Emis	ssion to air						•
12	CO_2	-	1	-	-	-	-
13	CH ₄	-	21	-	-	-	-
14	HCF	-	2800	-	-	-	-
15	N_2O	-	310	-	-	-	-
16	SF ₆	-	23900	-	-	-	-
17	NO_x	-	-	0.7	0.028	0.130	1.2
18	SO _x	-	-	1	0.048	-	0.096
19	Dust	-	-	-	-	-	0.82
20	HCl	-	-	0.88	-	-	0.5
21	СО	-	-	-	0.027	-	-
Emis	ssion to water	•					•
22	COD	-	-	-	-	0.022	-
23	T-P	-	-	-	-	3.060	-
24	T-Ni	-	-	-	-	-	750
25	Phenol	-	-	-	-	-	0.00008

Source: Handbook of LCA, 2002

4

Normalization

The indicator I_j of each environmental impact category is divided by a reference value known as normalization factor w_i

$$I_{j(w)} = \frac{I_j}{w_j}$$
, $j = 1, 2, ..., q$

q indicates the number of the environmental impact categories.

Weighting factors, ki

Source: Handbook of LCA, 2002

World (1995)

ADP

1.57 • 10¹¹ kg (Sb eq.) • yr⁻¹

GWP

3.86 • 10¹³ kg (CO₂ eq.) • yr⁻¹

AP

2.99 • 10¹¹ kg (SO₂ eq.) • yr⁻¹

POCP

 $4.55 \cdot 10^{10} \text{ kg } (C_2H_4 \text{ eq.}) \cdot \text{yr}^{-1}$

EP

1.29 • 10¹¹ kg (PO₄ eq.) • yr⁻¹

HTP

4.98 • 10¹³ kg (1,4-DCB eq.) • yr⁻¹

Phase 3 of LCA: Impact assessment a) Energy Depletion (ED)

Comparing energy recovery (option 1) with mechanical recycling (option 2)

Environmental Indicators	Option 1, (Energy recovery)	Option 2, (Mechanical recycling)	
Energy balance (ED), in [kcal]	-158,808,456,261	-186,049,047,033	
Abiotic depletion potential (ADP), in [kg Sb. eq.]	1,143,091	698,156	
Global warming potential (GWP), in [kg CO ₂ eq.]	452,329,521	334,977,313	

An Estimate for the Environmental Burden (EEB)

$$EEB_{(c,r)} = \sum_{j=1}^{q} I_{j(w)}$$
 , $c = 0...100\%$, $r = 0...100\%$

3.4.3. Sensitivity Analysis - perturbation method (Matrix of Environmental Load, q)

$$S_{(i)} = \frac{\partial g_{(k)}}{\partial A} = E^T e_k s^T \otimes A$$

$$\text{where: } E = -g_{diag} B \cdot A^{-1}$$

$$\begin{bmatrix} e_1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \text{if } i = k \end{bmatrix}$$

where:
$$E = -g_{diag}B \cdot A^{-1}$$

$$e_{k} = \begin{bmatrix} e_{1} \\ \vdots \\ e_{i} \\ \vdots \\ e_{n} \end{bmatrix}, \qquad e_{i} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{otherwise} \end{cases}$$

$$g_{diag} = \begin{bmatrix} 1/g_1 & \dots & \dots & 0 \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \dots & \dots & 1/g_s \end{bmatrix}$$

$$l_{i(\alpha,\beta)} = s_{i(\alpha,\beta)} \cdot \max\left(\frac{k_{i(j)}}{w_j}\right), \ i = 1,2,...n \ , \ \alpha = 1,2,...m \ , \ \beta = 1,2,...p \ , \ j = 1,2,...q$$

Sensitivity Analysis

Scenarios for:

- a. saving resources (ADP), and
- b. reducing the greenhouse gas emission (GWP)

Bement	Process	Entity	Load	Catecory	Sensitivity	Scenario
a56	Use of TV sets	TV sets	Naphta (p3)	ADP	1.2744	Decrease demand
a 66	Use of TV sets	Collected PLASTICS for separation	Naphta (03)	ADP	- 0.8941	Increase the collection rate of Plastic waste
a15	Production of TV sets	PS (ka)	Naphta (03)	ADP	0.8902	Decrease the amount of PS Use for TV
a17	Recovery of plastics	PS (ka)	Naphta (g3)	ADP	- 0.6239	Improve RECOVERY of PS
a 86	Use of TV sets	Use (vear)	CO2 (g14)	GWP	- 0.4709	Increace LIFE of a TV sets, i.e. production process
<i>a</i> 56	Use of TV sets	TV sets	CO2 (a14)	GWP	0.4285	Decrease demand
a11	Production of PS	PS (ka)	Naphta (d3)	ADP	-0.2701	Improve the efficiency of the process for production of PS
a25	Production of TV sets	PVČ (ka)	Naohta (c3)	ADP	0.2359	Decrease the amount of PVC use for TV
a27	Recovery of plastics	PVC (ka)	Naphta (c3)	ADP	- 0.1636	Improve RECOVERY of PVC
a35	Production of TV sets	PE (ka)	Naohta (c3)	ADP	0.1484	Decrease the amount of PE Use for TV
a37	Recovery of plastics	PF (ka)	Naohta (c3)	ADP	-0.1103	Improve RECOVERY of PE
a22	Production of PVC	PVČ (ka)	Naphta (c3)	ADP	- 0.0723	Improve the efficiency of the process for production of PVC
a33	Production of PE	PE (ka)	Naohta (c3)	ADP	- 0.0381	Improve the efficiency of the process for production of PE
a35	Production of TV sets	PF (ka)	CH4 (a15)	GWP	0.0037	Decrease the amount of PE Use for TV
a35	Production of TV sets	PE (ka)	CO2 (g14)	GWP	0.0331	Decrease the amount of PE Use for TV
a35	Production of TV sets	PE (ka)	N20 (a17)	GWP	0.0021	Decrease the amount of PE Use for TV

3.4.4. Strategy to reduce the environmental burden

- 1. Collect as many TV sets as possible
- 2. Use **PS** instead of PVC or **PE** for production of TV sets (i.e. possibly excluding PVC)

in turn:

- a. The efficiency of the separation process will be improved reducing the ADP indicator,
- b. The emission of CH₄ and CO₂ will be reduced (i.e. GWP)