Evidence obtained from people living in High Background Radiation Area (HBRA)

Wei ZHANG¹, Chunyan WANG¹, Masako MINAMIHISAMATSU², Deqing CHEN¹, Luxin WEI¹, Tsutomu SUGAHARA³, and Isamu HAYATA²,⁴

¹National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China 100088
²National Institute of Radiological Sciences, Chiba, Japan 263-8555
³Health Research Foundation, Kyoto, Japan 606-8502
⁴Central Research Institute of Electric Power Industry, Komae, Japan 201-8511

20th CODATA International Conference Oct 23-25, 2006 Beijing
In Guangdong Province of southern China there is a high background radiation area (HBRA) where the environmental natural radiation is 3 to 5 times higher than that in control area (CA) due to radio-nuclides such as Thorium 232 and Uranium 238 decay products in the soil and in the building materials of houses. Those areas are rural places far away from a city. Residents are farmers living there more than several generations. Except for the level of natural radiation, cultural and genetic background are very similar in HBRA and CA.
Study of mortality for cancer and non-cancer diseases

125,079 subjects during the period 1979-1998
1,992,940 person-years (PYs) at risk
12,444 deaths including 1,202 cancer deaths

Based on the hamlet-specific average external dose rates, the cohort members were categorized into four dose-rate groups.

HBRA
High: 2.46 (2.24-3.08) mSv/year
Intermediate: 2.10 (1.98-2.24) mSv/year
Low: 1.83 (1.25-1.98) mSv/year
Control area: 0.68 (0.50-0.96) mSv/year

(Zou, Tao, Sun, Akiba et al., Excerpta Medica Internat. Cong. Ser. 1276, 2006)
Relative risk of major malignant diseases in the residents of high background radiation area and of control area (1979-1998)

<table>
<thead>
<tr>
<th>Site of cancer</th>
<th>CA</th>
<th>RR (95%CI) for HBRA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RR</td>
</tr>
<tr>
<td>All cancers</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Leukemia</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Solid cancers</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Liver</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Nasopharynx</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Lung</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Stomach</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Esophagus</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The average annual effective (external) doses (10^-3 Sv/a) for high, intermediate, and low dose-rate groups in the HBRA, and the control group in the CA were 246.07 (224.10-308.04), 210.19 (198.07-224.09), 183.31 (125.29-193.06, and 67.92 (50.43-95.67), respectively.

(Zou, Tao, Sun, Akiba et al., Excerpta Medica Internat. Con. Ser. 1276, 2006)
Relative risk of mortality due to the diseases other than malignant diseases in the residents of high background radiation area and of control area

<table>
<thead>
<tr>
<th>Factors</th>
<th>Control</th>
<th></th>
<th></th>
<th>HBRA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases</td>
<td>RR</td>
<td>Cases</td>
<td>RR (95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>2847</td>
<td>1.00</td>
<td>7191</td>
<td>1.06 (1.01-1.10)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979-86</td>
<td>1233</td>
<td>1.00</td>
<td>3094</td>
<td>1.02 (0.95-1.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987-98</td>
<td>1614</td>
<td>1.00</td>
<td>4097</td>
<td>1.09 (1.02-1.15)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1347</td>
<td>1.00</td>
<td>3353</td>
<td>1.05 (0.98-1.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1500</td>
<td>1.00</td>
<td>3838</td>
<td>1.06 (1.03-1.13)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-39</td>
<td>285</td>
<td>1.00</td>
<td>992</td>
<td>1.31 (1.15-1.50)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>90</td>
<td>1.00</td>
<td>305</td>
<td>1.28 (1.01-1.62)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-59</td>
<td>208</td>
<td>1.00</td>
<td>525</td>
<td>1.00 (0.85-1.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-69</td>
<td>551</td>
<td>1.00</td>
<td>1288</td>
<td>1.06 (0.95-1.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+</td>
<td>1713</td>
<td>1.00</td>
<td>4081</td>
<td>1.01 (0.95-1.07)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: P<0.05 is limited to those aged 50 years or younger, but it did not show a monotonic increase of mortality according to external radiation dose or cumulative lifetime dose.

(Zou, Tao, Sun, Akiba et al., Excerpta Medica Internat. Con. Ser. 1276, 2006)
Effect of natural radiation in high background radiation area (HBRA)

Subjects analyzed

Regarding dicentrics and rings:
- 22 members from 8 families in HBRA
- 17 members from 5 families in control
- Each family consists of 3 generations
- In total 101,395 cells (2,600 cells per member) were analyzed

Regarding translocations:
- 27 aged persons and 6 children in HBRA
- 25 aged persons and 8 children in Control
- In total 312,887 cells (4,741 cells per person) were analyzed
Dic+Ring increased along with the increase of the dose those residents received.

Frequency of translocation was much higher than that of Dic in both areas. The frequency and individual variation were low in children and high in adult.

Statistically there was no difference between HBRA and Control.

Effect of high level of natural radiation was detected in dicentrics and rings, which are very specific aberrations to radiation.

On the other hand, the effect of high level of natural radiation was not detected in translocations, which reflects the effect of all kind of mutagens.
Effect of smoking

Subjects

HBRA
15 non-smokers
11 smokers
 In total 123,065 cells (4,733 cells per person) were analyzed

Control area
16 non-smokers
7 smokers
 In total 93,117 cells (4,049 cells per person) were analyzed
Effect of smoking in relation to dose

There was a significant difference between smokers and nonsmokers in control. On the other hand, there was no significant difference between smokers and nonsmokers in HBRA. Tendency of difference was found between HBRA smokers and CA nonsmokers. But there was no difference in the frequencies among other subgroups.
Effect of environmental mutagens in Beijing

Subjects

Age matched 10 men and 10 women who have lived in Beijing over 40 years

All of them were non-smokers

In total 78,281 cells (3,914 cells per person) were analyzed
Effects of environmental mutagens

Average age: 61.2
Average frequency of Translocation: 9.6 per 1000 cells
Comparison of effects of environmental mutagens, smoking, and radiation

- HBRA non-smoker (11.0 ± 3.5)
- CA non-smoker (8.4 ± 3.1)
- Beijing non-smoker (9.6 ± 5.0)
- HBRA children (3.8 ± 1.1)
- CA children (3.2 ± 2.0)
Radiation dose estimated with the frequency of chromosome aberration

Chronic low dose irradiation
- 600 mSv
- 400 mSv
- 200 mSv

Acute irradiation
- 400 mSv
- 250 mSv
- 150 mSv

2.4 mSv/year
Conclusion

- Low dose radiation at least up to 3-5 times higher than the normal level does not have significant effect on the induction of the diseases to be caused by the chromosome aberrations such as cancer and congenital diseases, and its effect is within the individual variation of total effect to be caused by all kinds of clastogens in the normal living circumstances.
Thank you for your attention!