

Radiation Effects on Regulation of Gene Expression

> Mitsuru Nenoi, Bing Wang, Tetsuo Nakajima

Radiation Effect Mechanisms Research Group, Natl. Inst. Radiol. Sci., Chiba, Japan

Risk of Radiation-Induced Cancers

From Hall, E.J., Radiobiology for the Radiologist. J.B. Lippincott Company

Experiment of continuous lowdose-rate irradiation at IES

Dose-rate range used in the study at IES

Number of genes whose expression levels were changed more than 1.6-fold by irradiation

dose-rate (nGy/min)	up-regulated	down-regulated	total
32	1	5	6
650	18	3	21
13,000	16	11	27
32 & 650	1	0	1
650 & 13,000	3	1	4
13,000 & 32	0	0	0

Functional analysis of deregulated genes

Four genes whose expression was enhanced after irradiation at 650 nGy/min and 13,000 nGy/min were involved in mitochondrial oxidative phosphorylation pathway.

Genes whose expression levels were significantly varied by irradiation

Welch's ANOVA
p<0.05
MTC: None

Clustering analysis of selected genes

GO category containing similar gene list to the clusters

		Overlapped	
	GO category	gene	p value
		number	
	cytoplasm	78	2.8E-07
	mitochondrion	22	5.7E-04
	mitochondrion organization and biogenesis	24	0.0013
	energy pathways	24	0.0055
	organelle organization and biogenesis	37	0.0071
	cell organization and biogenesis	37	0.0071
	cytoplasm organization and biogenesis	37	0.0071
	transferase	48	0.031
	cell organization and biogenesis	17	1.4E-05
	cytoplasm organization and biogenesis	17	1.4E-05
	organelle organization and biogenesis	17	1.4E- 05
	cytoplasm	22	0.0016
	mitochondrion	9	0.0061
	nucleosome	4	0.012
	mitochondrion organization and biogenesis	9	0.032
	GO SLIMS Cellular Component	39	0.040

Conclusion1

- Mitochondrial oxidative phosphorylation was suggested to be elevated after irradiation at 650 nGy/min and 13,000 nGy/min.
- Mice irradiated with low dose-rate radiation in this range may suffer oxidative stresses caused by elevated mitochondrial respiratory activity. This oxidative stress may be one of the factors that cause life spansshortening of irradiated mice.
- Multiple genes were found whose expression was changed more than 1.6-fold after 32 nGy/min, but their biological significances are unclear.

Adaptive response

Radioadaptive response

When cells are exposed to a priming low-dose or low doserate of radiation, they show a reduced biological response to a challenging high dose of radiation.

Olivieri et al., 1984

Radioadaptive response in mice during late embryogenesis

Experimental model

Priming irradiation parameters:

	Dose Rate (Gy/min)	DOS E (Gy)	Descriptio n
A	0	0	Control
В	0.34	0.3	Effective
С	4.2	0.3	dose-rate (DR)
D	2.5	0.3	Non- effective DR
Ε	0.34	0.5	Non-
F	0.34	1	effective dose

AR genes

Functional annotation and gene enrichment analysis

Conclusion2

- Intracellular and intercellular signaling activities are suggested to be important bases for radioadaptive response in mouse fetuses during late organogenesis.
- The present cDNA microarray analysis failed to show evidences for involvement of DNA damage repair genes in the radioadaptive response.

Acknowledgements

- Tetsuya Ono,T (Tohoku Univ.)
- Guillaum Vares (NIRS)
- Keiko Taki,K (NIRS)
- Jianyu Wu (ADSTEC)

This work was supported by the Budget for New Nuclear Crossover Research from the Ministry of Education, Culture, Sports, Sciences and Technology, Japan

- Tsuneya Matsumoto (IES)
- Yoichi Oghiso,Y (IES)
- Kimio Tanaka (IES)
- Kazuaki Ichinohe (IES)
- Shingo Nakamura,S (IES)
- Satoshi Tanaka (IES)