STRUCTURING AND ENGINEERING OF INDIAN DATA BASE ON MECHANICAL AND CORROSION METALLURGY

R.K. Dayal and Baldev Raj Indira Gandhi Centre for Atomic Research Kalpakkam (India) India has long experience in maintaining Scientific Data Bases

*Materials Science and Engineering

- Through professional bodies
 - Indian Institute of Metals
 - Materials Research Society of India
- Through Individual/ Research Institutes

MATERIALS SCIENCE AND ENGINEERING

Compilation of important scientific information in India was initiated as early as in 1977 *(Indian Institute of Metals)*

periodically updated

about the scientists specialization equipment capability research and development programme

Scientific Data on Alloy Phase Diagrams (IIM)

Data on Non-ferrous Metals (MRSI/TIFAC)

IGCAR

- Data have been generated over three decades.
- Valuable and extensive data on mechanical and corrosion properties of various materials

NUMBER OF REVERSALS TO FAILURE (2Nf) Comparison of fatigue properties of base metal and weld metal of type 316 stainless steel

TTS diagrams for 304 SS with different degrees of cold work. ○ - no attack; ● - light attack; ● - attack in boiling Cu-CuSO₄-H₂SO₄ medium.

1,00,000 h Creep Rupture Strength of Boiler Steels

MATERIALS

Austenitic SS 304 316 316 LN ALLOY D9 PE16

METALURGICAL VARIABLES

Grain Size (316) Heat To Heat Variation (316) Thermal Ageing (316) Weld Joint(316 & 316LN) Weld Metal (316 & 316LN) Cold Wok (304, 316) Ti/C Ratio (D9) Ferritic Steels 2.25Cr-1Mo 9Cr-1Mo MODIFIED 9Cr-1Mo

METALURGICAL VARIABLES

Weld Joint Weld Metal (2.25Cr-1Mo) Austenitisation Temperature PWHT (2.25Cr-1Mo)

Dissimilar Weld Joint (Inconel 182 Electrode) 2.25Cr-1Mo / Alloy 800 9Cr-1Mo / Alloy 800 Modified 9Cr-1Mo / Alloy 800

Large source of Data on Creep, Fatigue, Tensile, Fracture and corrosion properties on more than 25 materials

National Team on

Mechanical and Corrosion Metallurgy

Dr. Baldev Raj, IGCAR Dr. R. K. Dayal, IGCAR Chairman Convenor

Members: Dr. I. Chattoraj, NML, Jamshedpur Dr. A. O. Surendranathan, NITK, Surathkal Dr. Kulvir Singh, Corp R&D, BHEL, Hyderabad Dr. Subodh Kumar, IISc, Bangalore Dr. K. Laha, IGCAR Shri R.V. Subba Rao, IGCAR

Aim:

Data quality generation of basic data based on recognized/ standard test methods

Data accessibility information of data and source of data/ laboratories/ equipment/ specialisation

Data archiving preservation of old data; MS/PhD thesis work in PDF format

Plant experience; failure analysis

DATA SHEETS

- Elevated Temperature Tensile Properties
- Creep And Creep Rupture Properties
- Fatigue Properties
- Fracture Resistance From Transition Temperature And Fracture Mechanics Approach
- Corrosion Properties

Material History

- Melting, Processing And Heat Treatment
- Chemical Composition
- Grain Size
- Hardness
- Inclusion Content

Creep data

Data Sheet Format

Test temper ature (K)	Stress (MPa)	Time 0.5 %	to reach to 1.0 %	otal strain 2.0 %	(h) 5.0 %	Time to tertiary creep (h)	Minim um creep rate	Time to ruptu re (h)	Elong ation (%)	Reduc tion in area (%)

Graphical presentation of Creep data

- Microstructural change with creep exposure
- Failure location in weld joint

Data Sheet Format

Temperature	É	ε _{ta}	ε _{pa}	N ₂₀	σ _a
(K)	(S ⁻¹)	(S ⁻¹)	(S ⁻¹)	(No of	MPa
				Cycles)	

- É : strain rate (s⁻¹)
- t_h : strain hold time on tension / compression side (h)
- ϵ_{ta} : total strain amplitude control between the gauge length
- ε_{pa} : plastic strain amplitude at half life
- N₂₀ : number of cycles corresponding to a 20 % decrease in the peak tensile load as compared with the value at Nf /2
- σ_a : stress amplitude (MPa) at N₂₀ /2
- σ_{max} : maximum stress (MPa) at N₂₀ / 2
- σ_r : stress (MPa) at the end of the hold period at N₂₀ / 2.

Data Sheet Format

Low Cycle Corrosion Fatigue Data with hold time data (Creep-Fatigue interaction)

Tempe rature (K)	É (S ⁻¹)	ε _{ta} (S ⁻¹)	Hold time (min)	ε _{pa} (S ⁻¹)	N ₂₀ No of Cycles)	σ _a (MPa)	σ _{max} (MPa)	σ _r (MPa)
					5 /			

Sample DATA SHEETS

Indira C	Gandhi C	Centre f	or Atom	ic Resea	arch, Ka	lpakkar	n, India	a		Indira	Gandhi (Centre f	or Atom	ic Rese	arch, Ka	alpakkai	n, India	1		_		
										SENSIT17		TA FOR T	YPE 3161 /) STAINU	ESS STEEL	<u> </u>	-			+		
SENSITIZ	ATION DA	TA FOR TY	(PE 316 S	TAINLESS	STEEL											-				+		
										Chemical	composition	of materia	al (wt%)				1					
Chemical of	composition	of materia	(wt%)							Cr	Ni	Mo	Mn	Si	S	Р	С	N	В	V	Co	Cu
Cr	Ni	Мо	Mn	Si	S	Р	С	N	В	17.18	10.23	1.85	1.54	0.585	0.005	0.022	0.043	0.07	5 NA	0.061	0.23	0.207
16.46	12.43	2.28	1.69	0.64	0.006	0.025	0.054	0.053	NA	Material	History: mi	ill annealed	and 0 % co	d worked								
10.10	12.10	2.20	1.00	0.01	0.000	0.020	0.001	0.000		Wateria	HISIOTY. III								-			<u> </u>
Motorial L	licton/: mill	appooled	and 25 % o	old workod						-								0	NO ATTACK;LI	HT ATTACK	ERE ATTACK	1
Material I		annealeu a								Test Stan	dard : ASTN	A-262 pra	ictice E									
										-								973-	000	0 0 0 0 0		1
Test Otes											Tomp in %			Time to co	ncitization	a in h			000	5		1
Test Stand	ard : ASTN	/I A-262 pra	ICTICE E							-		<u>`</u>		Time to se				Ê 873-	000	****	° -	1
										_	700				15.50			= [0% COLD WOR	ĸ ^{co} ł		1
	Те	mp								_	690				9.00			101	102	10 ³	. 1	104
	in °C	in °K	Time to se	ensitization	in h						680				7.00				Ag	eing time . h		
											670				6.00					_		
	810	1083		0.20							660				5.00					_		
	800	1073		0.18				(1) 25	% COLD WORK		640		1		5.00							
	790	1063		0.17	1100	5 one	0 0				630				5.80		CCR = 0.4	3 °K/h				
	780	1053		0.17	*	¢ 💜////	•///•//m	~			620				7.00							
	770	1043		0.17	2 NOO		•//•/////	1708			610				10.00							
	760	1033		0.17	8 900	0	SEASTING ALL	14/12			600				16.00							
	750	1023		0.17	dw	NO SENSITIZA	ON O	4.e//•	•		580		1		40.00					-		
	740	1013		0.17	- B00	-		0	0		570				60.00							
	730	1013		0.10	*	0.1	1.0		10		560				200.00							
	730	1003		0.13			TIM	E/h	1		550				640.00							
	720	093		0.20																		
	710	903		0.22) ºK/b			_												
	700	973		0.20		CCK = 790																
	690	963	-	0.30		-																
	680	953		0.38																		
	670	943		0.45						4												
	660	933		0.58			L															
	650	923		0.70																		
	640	913		0.90																		
	630	903		1.20																		
	620	893		1.70																		
	610	883		2.20																		
	600	873		2.60						1												
	590	863		4.00						1												
	580	853		6.00			1															
	570	843		11.00						-												
	560	833		20.00					+	-												
	550	000		20.00			-		-	-												
	550	023		30.00						-												
										1												

Sample DATA SHEETS

SENSITIZATION DATA FOR TYPE 316 STAIN	Si	STEEL					SENSITIZ	ATION
Chemical composition of material (ut%)	Si	DIEEL					SENSITIZ	ALION
Chamical composition of material (ut())	Si				1			T
The second state of the se	Si						Chemical	composi
Cr Ni Mo Mn	64	S	Р	C	N	В	Cr 17.18	Ni 10.2
16.46 12.43 2.28 1.69 0		0.006	0.025	0.054	0.053	NA		10.2
10.40 12.40 2.20 1.00 0	.04	0.000	0.020	0.004	0.000	19/3	Material I	listory:
Material History: mill annealed and 10 % cold w	orked					-		
							Test Stand	lard : AS
Test Standard : ASTM A-262 practice E								Temp in
T								710
		in h						700
IN C IN K I IME to sensiti	ization	in n				┨────┤	↓	690
910 1092	0.25							670
800 1072	0.25							660
700 1073	0.22		0 0	0	(c) 10 % (OLD WORK		650
790 1003	0.19	×1100	0 1878	770	0	_		630
760 1055	0.19		<i>\\\\</i>		¥//>//			620
760 1022	0.10		· · · ·	SENSITIZATION	¥////			610
750 1033	0.17	- 900 g	O SENSITIZATI	ON	• • •	_		590
740 1013	0.10	— Ř.	0	0 0	0	• -		580
740 1013	0.17	800			0			560
720 993	0.10	0	.1	1.0 TIME/	10 ⁻			550
710 983	0.23					1		
700 973	0.27		CCR = 765	°K/h		+		4
690 963	0.30		0011 = 700					
680 953	0.38							
670 943	0.46					1		
660 933	0.58					1		
650 923	0.70					1 1		
640 913	0.90							
630 903	1.30							
620 893	1.90					1		
610 883	2.80							
600 873	4.00							
590 863	4.80							
580 853	9.00							
570 843	14.00							
560 833	22.00							
550 823	42.00							

Indira Gandhi Centre for Atomic Kesearch, Kalpakkam, India SENSITIZATION DATA FOR TYPE 316L(N) STAINLESS STEEL
SENSITIZATION DATA FOR TYPE 316L(N) STAINLESS STEEL
SENSITIZATION DATA FOR TYPE 316L(N) STAINLESS STEEL
Chemical composition of material (wt%) C N B V Co 1718 Mo Mn Si S P C N B V Co 0<
Chemical composition of material (wt%) C N N N S P C N B V Co 17.19 10.22 14.55 15.55 0.023 0.023 0.023 0.025 0.025
Cr Ni Mo Mn Si S P C N B V Co 17.49 10.22 1.95 1.54 0.555 0.005 0.022 0.042 0.025 NA 0.025 0.02
17.19 10.22 1.95 1.54 0.595 0.005 0.022 0.042 0.075 NA 0.061 0.22 0.
17.10 10.23 1.03 1.34 0.303 0.003 0.022 0.043 0.075 NA 0.061 0.23 0
Material History: mill annealed and 10 % cold worked
Test Standard : ASTM A-262 practice E
<u> </u>
The second secon
Temp in °K Time to sensitization in h
710 700 5
700 3.00 C(c) 10% COLD WORK
670 3.30 Ageing time h
650 4.00
640 480 CCR - 073 °K/b
600 800
610 12.00
600 18.00
590 27.00
580 40.00
570 64.00
560 120.00
550 200 00

Creep data on 1Cr1Mo0.25V rotor forging steel in normalised and tempered condition

RC575-170	OMPa							
Timo	Strain							
0	0.0123		100					
01	0.0120							
0.3	0.15				◆ 170 N	1Pa		
1	0.25		-		∘ 190 M	1Pa		
2.5	0.32		-		- 100 10			
10	0.5		-		▲ 210 N	lPa		
24	0.83				• 230 M	1Pa	•	
30	0.965		10					. –
48	1.248	ų	•					
50	1.283		.				i i i	
60	1.4	ie	-					
70	1.6	t.	5				•	
80	1.8	Geo	2			· · · · · ·		
96	2.088	20	5			• •		
110	2.3		1 -			•	•	
120	2.536		Ē			● ▲ ₀ ●	•	
127	2.686		1		•	•		
144	3.047		-		1	•		
152	3.245		-		A 0 4	•		
168	3.65		-		• • •			
176	3.89		•	0	•			
192	4.412		0.1					
195	4.537		0.1		1	10	10 0	1000
198	4.734					Time, h		
216	5.479							
218	5.59							
224	5.7							
240	5.912							
251	6.5							
264	7.038							
266	7.5							
268	8.099							
271	8.8							
272	9.717							
288	10.078							
289	10.2							

Data on the aqueous corrosion of Ductile Iron in the alloyed and unalloyed conditions

Indira Gandhi Centre for Atomic Research, Kalpakkam

Creep Properties of 2.25Cr-1Mo Base Metal, Weld Metal and Weld joint at 773 K

Chemical composition base metal (wt%)

Cr	Мо	Si	Mn	С
2.18	0.93	0.18	0.47	0.06
Р	S	Fe		
0.008	0.008	Bal.		

Material History: 12 mm plate

Normalized at 1223 K for 17 minutes Tempered at 1003 K for 60 minutes

Chemical composition deposited weld metal (wt%)

Cr	Мо	Si	Mn	С
2.3	1.1	0.4	0.72	0.05
Р	S	Fe		
0.02	0.012	Bal.		

Test Standard: E 139 - 00

Creep Properties of 2.25Cr-1Mo Base Metal at 773 K

Material History: Post Weld Heat Treatment (PWHT) at 973 K for 60 minutes

Stress, Mpa	Creep Rate / s	Rupture Life, h	Elongation,%	Reduction,%
190	6.45E-10	13803	17	77
200	9.10E-10	7243	18	81
220	2.96E-09	1674	20	85
230	6.92E-09	1045	21	86
250	1.59E-08	243	24	87
275	5.45E-08	80	26	87

Creep Properties of 2.25Cr-1Mo Weld Metal at 773

Material History: Post Weld Heat Treatment (PWHT) at 973 K for 60 minutes

Stress, Mpa	Creep Rate / s	Rupture Life, h	Elongation,%	Reduction,%
200	1.54E-10	13725	9	53
220	5.46E-10	6501	9	60
230	9.38E-10	4743	10	62
240	2.94E-09	1680	12	69
260	6.35E-09	652	15	72
300	4.78E-08	80	19	79

Creep Properties of 2.25Cr-1Mo Weld Joint at 773 K

Material History: Post Weld Heat Treatment (PWHT) at 973 K for 60 minutes

Stress, MPa	Creep Rate / s	Rupture Life, h	Elongation, %	Reduction, %
160	2.42E-10	9005	9	62
180	8.70E-10	1744	11	75
200	4.30E-09	599	13	81
230	3.40E-08	301	14	84
240	4.30E-08	174	15	86

Indira Gandhi Centre for Atomic Research, Kalpakkam

Creep Properties of 9Cr-1Mo Base Metal and Weld joint at 823 K

Chemical composition base metal (wt%)

Cr	Мо	Si	Mn	С
8.36	0.93	0.49	0.46	0.1
Р	S	Fe		
0.008	0.002	Bal.		

Material History: 12 mm thick plate Normalized at 1223 K for 15 minutes Tempered at 1053 K for 120 minutes

Chemical composition deposited weld metal (wt%)

Cr	Мо	Si	Mn	С
8.9	0.98	0.52	0.52	0.12
Р	S	Fe		
0.003	0.03	Bal.		

Test Standard: ASTM E 139 - 00

Creep Properties of 9Cr-1Mo Base Metal at 823 K

Material History: Post Weld Heat Treatment (PWHT) at 998 K for 60 minutes

Stress, Mpa	Creep Rate / s	Rupture Life, h	Elongation,%	Reduction,%
130	5.00E-10	12980	17	77
150	3.56E-09	3914	18	81
180	5.30E-08	563	20	85
200	2.95E-07	93	21	86
240	1.66E-06	11.5	24	87

Creep Properties of 9Cr-1Mo Weld Joint at 823 K

Material History: Post Weld Heat Treatment (PWHT) at 998 K for 60 minutes

Stress, MPa	Creep Rate / s	Rupture Life, h	Elongation, %	Reduction, %
100	2.10E-10			
130	2.30E-09	6523	9	62
150	1.25E-08	2070	11	75
180	1.15E-07	394	13	81
200	3.65E-07	80	14	84
240	1.83E-06	11	15	86

Indira Gandhi Centre for Atomic Research

Tensile Properties of 9Cr-1Mo Steel and simulated HAZ of its weld joint

Chemical composotion of material (wt %)

Cr	Мо	Si	Mn	Р	S	С
8.36	0.93	0.49	0.46	0.008	0.002	0.1
Fe						
Balance						

Test Standard: ASTM E8M - 04

Tensile Properties of 9Cr-1Mo Steel Base Metal

Material History: Normalized at 1223 K for 15 minutes tempered at 1053 k for 120 minutes

Temperature, K	Yield Stress, Mpa	UTS,Mpa	Elongation,%	Reduction,%
298	522	681	20.8	74.5
473	459	590	17.1	76.5
523	435	586	15.7	76.7
548	448	580	15.8	76.7
573	449	574	16.7	73.2
598	449	567	14.8	75.7
623	451	569	14.4	73.7
673	440	548	14.8	73.5
723	423	506	15.6	73.9
773	389	441	16.1	82.3
823	354	376	16.4	87.5
873	280	292	18.8	93.7

Tensile Properties of Simulated Intercritical HAZ in 9Cr-1Mo Weld Joint

Temperature, K	Yield Stress, Mpa	UTS,Mpa	Elongation,%	Reduction,%
298	502	650	21.2	74.5
473	434	558	17.5	75.8
523	433	549	15.4	76.5
548	434	557	16.3	76.4
573	431	547	15.2	75.7
598	431	553	15.9	72.4
623	428	540	15.9	73.2
673	402	523	15.9	74.2
723	393	480	16.1	78.2
773	374	413	16.3	82.2
823	328	347	16.9	89.1
873	263	276	17.8	92.6

Material History: Soaking at 1138 K for 5 minutes, oil quenchingair cool Tempered at 973 K for 60 minutes, air cool

Tensile Properties of Simulated Fine Grain HAZ in 9Cr-1Mo Weld Joint

Material History: Soaking at 1200 K for 5 minutes, oil quenchingair cool Tempered at 973 K for 60 minutes, air cool

Temperature, K	Yield Stress, Mpa	UTS,Mpa	Elongation,%	Reduction,%
298	559	700	17.4	74.3
473	491	616	15.5	78.6
523	518	624	14.1	76.5
548	535	635	13.8	77.6
573	533	645	12.7	77.9
598	508	613	13.5	77.9
623	503	612	13.2	74.5
673	486	575	13.7	74.5
723	473	538	14.4	74.5
773	459	500	15.9	81
823	381	421	18.9	86.2
873	303	319	22.4	98.1

Tensile Properties of Simulated Coarse Grain HAZ in

Sample Data Sheets

Material History: Soaking at 1323 K for 5 minutes, oil quenchingair cool Tempered at 973 K for 60 minutes, air cool

Temperature, K	Yield Stress, Mpa	UTS, Mpa	Elongation, %	Reduction, %
298	634	761	15.3	73.3
473	560	676	12.6	77.5
523	566	656	12.6	77.4
548	569	667	11.7	74.8
573	561	664	11.7	76
598	556	661	11.9	75.5
623	556	655	12.2	74.5
673	546	629	12.8	75.5
723	540	576	12.9	77.7
773	495	530	14	83.3
823	405	434	15	88.4
873	336	354	16	90.9

Tensile Properties of Simulated Coarse Grain with Delta Ferrite in 9Cr-1Mo Wele

Material History: Soaking at 1483 K for 5 minutes, oil quenchingair cool Tempered at 973 K for 60 minutes, air cool

Temperature, K	Yield Stress, Mpa	UTS, Mpa	Elongation, %	Reduction, %
298	631	736	16.7	73.5
473	561	650	13.8	75
523	560	646	11.3	73
548	546	623	10.3	74
573	557	636	11.3	69.2
598	529	628	11.2	66.1
623	550	621	10.9	69.2
673	525	598	10.4	67.8
723	498	544	11.3	69.5
773	478	509	14	75
823	400	424	15.5	86.9
873	312	314	17	92.1

Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Tensile Properties of 2.25Cr-1Mo base metal and simulated HAZ of its weld joint

Chemical composition of the steel (wt %)

Cr	Мо	Si	Mn	С
2.18	0.93	0.18	0.47	0.06
Р	S	F		
0.008	0.008	Bal.		

Test Standard: ASTM E8M - 04

Tensile Properties of 2.25Cr-1Mo base metal

Material History: Normalised at 1223 K for 17 minutes, air cool Tempered at 1003 K for 60 minutes, air cool

Temperature, K	Yield stress, M Pa	UTS, M Pa	Elongation,%	Reduction,%
298	476	591	19.3	81.2
423	424	522	16	80.8
473	421	523	14.9	81.9
523	430	549	15.2	78.2
548	439	545	14.3	78.5
573	444	548	14.3	76.4
623	443	542	14.9	78.5
673	428	524	14.4	79.1
723	405	486	13.8	83.4
773	391	465	13.2	83.2
823	373	410	14.3	88.8
873	338	340	15.5	92.4

Tensile Properties of Simulated Intercritical HAZ in 2.25Cr-1Mo Weld Joint

Temperature, K	Yield Stress, Mpa	UTS,Mpa	Elongation,%	Reduction,%
298	339	480	25	83
423	330	428	22.7	81.2
473	318	429	21.1	80.8
523	315	443	19.3	78.6
573	312	467	17.6	77.4
623	308	475	16.5	75.5
673	296	470	17.2	77.2
723	288	443	17.1	79.3
773	287	400	16.4	81.9
823	273	350	16.8	82.9
873	237	285	18.5	88.7

Material History: Soaking at 1100 K for 5 monutes, oil wuenching Tempering at 973 K for 60 minutes, air cooling

Tensile Properties of Simulated Fine Grain HAZ in 2.25Cr-1Mo Weld Joint

Material History: Soaking at 1173 K for 5 monutes, oil wuenching Tempering at 973 K for 60 minutes, air cooling

Temperature, K	Yield Stress, Mpa	UTS, Mpa	Elongation, %	Reduction, %
298	570	674	17.8	81.5
423	539	607	14	80.8
473	552	624	13.9	81.1
523	561	624	14	80
573	536	616	12.6	79
623	514	585	14.8	75.9
673	509	545	15.7	78.1
723	496	507	16.3	79.5
773	464	441	15.8	81.2
823	415	350	15.8	87.5

Tensile Properties of Simulated Coarse Grain HAZ in 2.25Cr-1Mo Weld Joint

Temperature, K	Yield Stress, Mpa	UTS, Mpa	Elongation, %	Reduction, %
298	685	762	13.3	65.3
423	664	754	12	60.3
473	638	718	11	59.7
523	611	674	10.5	61.2
573	630	702	9	56.7
623	611	681	11.1	63.2
673	582	626	9.7	65.6
723	552	608	10.1	59.1
773	525	535	8.3	57.7
823	480	500	7.9	50

Material History: Soaking at 1473 K for 5 monutes, oil wuenching Tempering at 973 K for 60 minutes, air cooling

CONCLUSIONS

- Enormous amount of data on Mechanical and Corrosion properties of Materials have been generated in Research Laboratories in India
- A working group has been formed with members from different laboratories with periodic review
- Work has been initiated to collect these Data in form of Data sheets
- One Independent web site will be open soon for public access of the data
- Financial and manpower support expected from Dept of Science and Technology, (Govt. of India) for above work.

