XML Based Networking Method for Connecting Distributed Anthropometric Databases 24 October 2006

Huaining Cheng Dr. Kathleen M. Robinette Human Effectiveness Directorate Air Force Research Laboratory

Approved for public release; distribution is unlimited. AFRL-WS 06-2387 (Oct 13 2006)

- Integration issues
- Solution options with pros and cons
- WEAR short-term solutions
- WEAR long-term solution
- Summary

- WEAR stands for World Engineering Anthropometry Resources
 - A nonprofit organization based in France to promote sharing and using of its members' anthropometry resources
 - A dozen members located around world
 - Members have huge collection of anthropometry survey data over large span of time

- Data extraction and search
- Network accessibility
- Data representation
- Data quality
- Security
- Data analysis
- Data autonomy
- Financial and manpower constraints

- Examine three possible integration solutions for the WEAR group integration
 - Linked servers
 - Data warehouse
 - Service-oriented architecture (XML Web services)
- Examine how the solutions can address the above integration issues
- Envision potential anthropometry applications for the integrated WEAR

Linked Server Structure

- Use four-part name syntax in a query instead of only table name
 - LinkedServerName
 - DatabaseName
 - Owner
 - TableName

REF 1: "Configuring Linked Servers," Microsoft MSDN Library, http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adminsql/ad_1_server_4uuq.asp

- Advantages conceptually easy
 - The ability to issue distributed queries and transactions on heterogeneous data sources across the enterprise
- Disadvantages tight integration and direct access
 - Maintenance and update nightmare
 - No data autonomy
 - Require direct access and reliable connection

- Main objective of data warehouse is business intelligence analysis of integrated data over time
 - Business trend and variance analysis through OLAP (On-Line Analytical Processing)
 - Data mining automated discovery of implicit patterns and interesting knowledge hidden in the large amounts of data

- Characteristics of data warehouse
 - Specialized database built on top of operational databases.
 - Integration process through ETL (Extract, Transform, and Load)
 - Optimized for over time data analysis
 - Highly normalized structure

- Anthropometry database application of star schema
 - Find groups of anthropometry measurements as biometrics identifier

- Advantages strong analytical capability
 - A platform for many potential anthropometry applications of OLAP and data mining
- Disadvantages tight integration and high cost
 - Difficult to build ETL processes with various systems platforms and database structures as well as different locales
 - Lack of data autonomy

- Web service architecture adheres to the principles of service-orientation
 - Services are loosely coupled, autonomous, stateless, and discoverable.
- Consists of three basic types of entities
 - Service requestor, service provider, and service registry
 - Communicate through TCP/IP

• Member 1 requests survey data & shape descriptors

- XML Web service architecture is a loosely coupled integration
 - Integration is done through the service contract (WSDL) instead of open connection
 - Work is requested/delivered as payloads in the SOAP messages
 - Messaging mechanism brings
 - Autonomy
 - Statelessness

- Advantages autonomy and scalability
 - Solve the problems that are difficult to handle by a tight integration
- Disadvantages security and performance
 - Challenge in performing and propagating user authentication and authorization
 - XML documents are slow to create and process
 - Evolving standards and specifications

WEAR Integration Objectives Short-Term

- Real world two types of integrations
 - Enterprise systems integration
 - Business to business (B2B) integration
- Short-term WEAR integration objectives
 - Integrate and share anthropometry survey data automatically
 - WEAR members maintain and control independently their databases and existing web application

WEAR Integration Solution Short-Term

- WEAR has to be treated as a federation
- Web service architecture is inherently federated because of its loosely coupled nature
 - Best solution to make the WEAR integration satisfy the short-term objectives
 - Universal anthropometry data sets XML
 - Autonomous

- Limit services to data sets only without RPC (remote procedure call)
- Real-time performance is not a concern
- Use restricted UDDI registry to increase security
- Implement user authentication using X509 digital client certificate
- Implement user authorization through SOAP header

- WEAR integration long-term objectives
 - Build analytical models to produce anthropometry solution toolkits
 - Offer these toolkits as Web services accessible by the public and special industry groups

WEAR Hybrid Web Service / Data Mart Model

- WEAR integration is a type of federated integration
- XML Web service is the best solution due to its loosely coupling nature and service orientation
- Data marts have great potential for discovery of anthropometry data
- Hybrid Web service/data mart model is a solution to combine analytical models and XML web services
- XML is the foundation of the entire integration solution

