

Hydrogen storage materials and their development

Xingguo Li

Inorganic institute, College of Chem. & Molecular Eng. Depart. Adv. Mater. And Nanotech., College of Eng. Peking University, China

The CODATA 2006 Conference, Beijing, Oct. 23-25

Power generation percent of different energy

Global carbon dioxide generation by mineral fuel (from Scientific American 2002)

	Exhaust percent(wt%)	(t%) Exhaust amount of per person (ton)			
America	24	5.4			
China	14	0.7			
Russia	6	2.7			
Japan	5	2.5			
India	5	0. 3			
Germany	4	2.8			
Canada	2	4. 2			
Britain	2	2.5			
Korea	2	2.2			
Italy	2	2.0			
France	2	1.7			
Mexico	2	1. 1			

It has become increasingly clear that hydrogen as an energy carrier is 'in' and carbonaceous fuels are 'out'. Hydrogen energy is high efficiency and near zero emissions. The hydrogen economy is coming.

James A. Ritter, Materials today, September 2003

Hydrogen energy is widely used in transportation

Volumetric and gravimetric hydrogen density of some selected hydrides.

Three options exist for storing hydrogen: as a highly compressed gas, a cryogenic liquid, or in a solid matrix.

James A. Ritter Materials today, September 2003, 24

15 MPa compressed hydrogen gas cylinder

The hydrogen storage capacity is only 1.2 mass%.

35 and 70MPa compressed hydrogen gas cylinders

100 MPa compressed H₂ cylinder is also being developed.

The hydrogen storage is about 2.7% at 35 MPa and 5.5 mass% at 70 MPa.

Hydrogen storage in liquid state

Hydrogen storage in liquid state has high storage capacity, but it resumes a lot of energy in liquation and low temperature keeping, therefore, the energy utilization efficiency is low.

Requirements for hydrogen storage materials

Hydrogen storage properties	Requirement				
Capacity (mass%)	>6 %				
Capacity (g/l)	>60				
Hydrogen absorption rate	<5min				
Hydrogen desorption rate	<3h				
plateaus pressure	Near several Bar at room temp.				
Security	No ignition, explosion, poison				
Cyclic life	>500				
Working temperature	25-100°C				

Schlapbach & Züttel, NATURE, 414 (2001) 353

1. Chemical absorption a. Metallic compounds b. complex hydrides c. other compounds 2.Physical adsorption a. Carbon materials b. Metal-organic frameworks c. Molecular sieve d. clathrate hydrates

Intermetallic compounds and their hydrogen-storage properties

Types/Properties	AB ₅	AB ₂	AB	A ₂ B	
	LaNi ₅ (Mm, MI.)	ZrM ₂ , TiM ₂	TiFe	Mg ₂ Ni	
		(M: Mn,Ni,V)			
Storage capacity	1.4%	1.8~2.4%	1.86%	3.6%	
(mass %)	Low			High	
Activation	Easy	Difficult in first process	Difficult	Difficult	
Storage rate	Fast at	Absorption and desorption at	Absorption and desorption at	low rates	
	room romp.	room temp.	room temp.	300 C.	
Cyclic life	Excellent	Poor	Poor	Fine	
Stability	Excellent	Fine	Weak	Fine	
Cost	High	Cheap	Cheap	Quite cheap	

Volume for storage of 4 kg H2 in different states	Mg- comp	based ounds	
	Compounds	Hydrogen storage capacity (wt%)	
	Mg ₂ NiH ₄	3.6	
	Mg ₂ CoH ₅	4.3	
	Mg ₂ Cu	2.4	
	Mg ₂ FeH ₆	5.5	
Mg2NiH4 LaNi5H6 H2 (Liquid) H2 (200 bar)	MgH ₂	7.7	
3.6 wt% 1.4 wt%			

For improving Mg2Ni's properties, many researches are carried out and many kinds of Mg-based compounds are studied. As Mg-based compounds have high storage capacity and low cost, it will receive more and more attention in future.

Complex hydrides for hydrogen storage applications

Hydride	Mass% hydrogen	Availability					
KAIH ₄	5.8	J. Alloy. Compd(2003) 353,310					
LiAIH ₄	10.6	Commercially available					
LiBH4	18.5	Commercially available					
$AI(BH_4)_3$	16.9	J.Am.Chem.Soc.(1953) 75,209					
LiAlH ₂ (BH ₄) ₂	15.3	British patents 840 572,863 491					
$Mg(AIH_4)_2$	9.3	Inorg. Chem.(1970) 9,235					
$Mg(BH_4)_2$	14.9	Inorg. Chem.(1972) 11,929					
Ca(AIH ₄) ₂	7.9	J.Inorg.Nucl.Chem.(1955) 1,377					
NaAlH ₄	7.5	Commercially available					
NaBH ₄	10.6	Commercially available					
Ti(BH ₄) ₃	13.1	J.Am.Chem.Soc.(1949),71,2488					
Zr(BH ₄) ₃	8.9	J.Am.Chem.Soc.(1949),71,2488					
Mass% of hydrogen in each molecule is based on theoretical maximum							

Mass% of hydrogen in each molecule is based on theoretical maximum

James A. Ritter*, Armin D. Ebner, Jun Wang, and Ragaiy Zidan, Mater, Today 2003, 9, 18

Paper number increase in recent ten years, red: the total paper number of all hydrogen storage materials, Green: the paper number of complex hydrides. For physical adsorption group, most widely studied materials are porous materials, such as carbon materials and metal organic frameworks.

Carbon materials

Mesoporous carbon

Carbon NTs

Active carbon

Nano. Lett. Vol. 4 No. 8, 2004 1489-1492

J. Am. Chem. Soc. 2001, 123, 5845

Phys. Chem. Chem. Phys., 2004, 6, 980-984

Maximum storage capacity : 1.2 mass% at room temperature 10 bar 4.5 mass% at 77 K at 10 bar

Hydrogen storage in metal-organic frameworks

Huge specific surface area: 3000 m²/g Pore diameter : 1.3 nm Max storage at 77K : 4.5% at 1 bar at room temp.: 1.0 at 20 bar

Yaghi O.M. etc. al. Science Vol 300 2003 1127-1129

Published paper numbers of hydrogen storage in porous materials

Summary

1) Hydrogen storage materials have chemical storage and physical storage types. Actually applied ones are in chemical storage.

2) Hydrogen storage capacity of conventional metallic compounds is lower than 2 mass%, and materials with capacity larger than 5% are explored. Mg-based alloys and complex hydrides are most expected to get high storage capacity.

3) Porous materials such as carbon materials and metal-organic frameworks are studied with special interest in their different storage mechanism. For these materials, hydrogen storage usually needs high pressure and low temperature.

Fuel cell battery

Summary of fuel-cell types.

Brian C. H. Steele et.al, *Nature.*, 2001,414, 345-352

Fuel-cell types and fuel processing.

Switchable Mirrors 20 µm

Optical domain switching. 400-nm-thick Y film capped with 7 nm of Pd

Visualization and control of hydrogen diffusion in transition metals

Reversible optical switching device

Mg₂NiH₄ /Ti/Pd thin films for optical hydrogen sensing

Mg–Ti–H thin films for smart solar collectors

Statistic of published papers on hydride films and switchable mirrors

Number of papers

R. Griesson et al
R. Kirchhelm et al
B. Hjorvarsson et al
K. Yoshimura et al
others

Main research groups in the world on hydride films

Photocatalytic hydrogen evolution under UV light

Photocatalytica hydrogen evolution under visible light

Species	photocatalyst	Band gap (eV)	Quantum efficiency (%)	Rate of hydorgen evolution (mmol/h)	species	photocatalyst	Band gap (eV)	Quantum efficiency (%)	Rate of hydrogen evolution (umol/h)
Oxi	NiO/TiO ₂	3.2	-	0.16		NiO-In _{0.9} Ni _{0.1} TaO ₄	2.3	0.66	16.6
de and	RuO ₂ -ZnGa ₂ O ₄	2.8	-	1	Oxide	PbBi ₂ Nb ₂ O ₉	2.9	0.95	7.6
d Nitri	CdS/K ₂ Ti _{3.9} Nb _{0.1} O ₉	3.0	-	4.7		Cr-Ba ₂ In ₂ O ₅ /In ₂ O ₃	2.9-3.0	0.3	0.03
de	RuO ₂ /Ge ₃ N ₄	3.8-3.9	9	0.47		Rh2-yCryO3-(Ga1- xZnx)(N _{1-x} O _x)	2.68	-	358
Ti	La4CaTi5O17	3.8	20	0.5		LaTiO ₂ N	2.1	1.5	8
itanat	$Ni(4\%)-Rb_2La_2Ti_3O_{10}$	3.4-3.5	30	0.3	Nitı	Pt(0.15%)-Y ₂ Ta ₂ O ₅ N ₂	2.2	-	10
ſ	RuO ₂ /Ba ₂ Ti ₄ O ₉	3.5	-	1.4	ide	Ru(0.25%)-Y ₂ Ta ₂ O ₅ N ₂	2.2	-	50
Tanta	NiO(0.2%)-La(2%)- NaTaO ₃	4.1	-	2.2		Pt(0.15%)- Ru(0.25%)- Y ₂ Ta ₂ O ₅ N ₂	2.2	-	250
ılate	NiO/Sr ₂ Ta ₂ O ₇	4.6	-	1.0		GaN:ZnO	2.6	0.14	0.06
Niol	Ni(0.1%)-K ₄ Nb ₆ O ₁₇	3.3	5	0.073	Suli	Zn _{0.999} Ni _{0.001} S	2.3	-	380
bate	Pt/(Ca,Sr)2Nb2O7	4.1-4.3	-	0.42	fide	ZnS-CuInS ₂ -AgInS ₂	2.3	7.4	2300

The number of papers on photocatalytic hydrogen evolution

Intermetallic compounds and their hydrogen-storage properties

Туре	Metal	Hydride	Structure	mass%	p _{eq} , T
Elemental	Pd	$PdH_{0.6}$	Fm3m	0.56	0.020 bar, 298 K
ABs	LaNi _s	LaNi _s H _e	P6/mmm	1.37	2 bar, 298 K
AB ₂	ZrV _z	$ZrV_2H_{5.5}$	Fd3m	3.01	10 ⁻⁸ bar, 323 K
AB	FeTi	FeTiH ₂	Pm3m	1.89	5 bar, 303 K
A ₂ B	Mg _z Ni	Mg _z NiH ₄	P6222	3.59	1 bar, 555 K
Body-centred cubic	TiV ₂	TiV ₂ H ₄	b.c.c.	2.6	10 bar, 313 K

Louis Schlapbach* & Andreas Züttel, *Nature* 2001, 414, 353.

mechanism of photocatalytic hydrogen evolution

大角泰章 水素吸藏合金の基礎 1997.1 大阪

Some results in this area

- •Yaghi O.M. ect. al.
- •Many MOFs based on the $[Zn_4O]^{6+}$ units
- •Large specific surface area. Max storage 4.5
- •Long J. R. ect. al.
- •Prussian blue analogues
- •Strong interaction. 6.9-7.4 kJ/mol about 50% higher than MOF-5
- •Kubota Y. ect. al.
- •[Cu2(pzdc)2(pyz)]n (pzdc=pyrazine-2,3- icarboxylate, pyz=pyrazine),
- •Direct Observation of Hydrogen Molecules Adsorbed
- •And so on.