Composite materials design and property prediction using materials database

Yibin Xu, Masayoshi Yamazaki and Koich Yagi National Institute for Materials Science Tokyo, Japan

Why composite material?

• Multi-requirements on material property

Nuclear power plants	Electronic packaging	Brake disc of cars	Thermal barrier coating
Non-radioactive, high thermal conductivity, thermal shock resistance, strength	high thermal conductivity, low thermal expansion, strength	high thermal conductivity, wear resistance, strength	Low thermal conductivity, low thermal expansion

- Difficult to be satisfied by single phased material
- Improve material performance by mixing two or three phases
- Infinite combination of materials and structures
- Constitutional and structural design and optimization by computer simulation

Thermophysical property of composite

Objective

- Develop a platform for design composites with required thermophysical property, basing on the material property data we known.
- Apply the system to material research and evaluate the accuracy of calculation by experiments.

Materials database

- Thermophysical property database
 - Density, specific heat and thermal conductivity data extracted from NIMS Materials Database.
 - Data number: 990 (polymers, alloys, ceramics, etc.)

Simulation systems

- Two simulation methods available
 - Analytical method
 - Numerical method (finite element method)
- Fit for different requirements on computational efficiency and accuracy.

Analytical simulation method

Analytical solutions used for different composite structures

	Structur	Analytical colutions				
Structure type	Dispersion shape	Dispersion distribution	Interface	Analytical solutions		
Laminate			No	Wiener expression		
composite			Yes	(Law of mixture)		
Dispersion composite	Sphere	10.20	Νο	Equivalent inclusion method		
	Ellipsoid	1D, 2D,				
	Cylinder	and SD				
	Sphere		Yes			
	Ellipsoid	1D		Effective medium theory		
	Cylinder					

- Features
 - Simple model
 - Quick calculation
 - Suitable to study the dependence of thermal property on structure

Demonstration

Finite element simulation method

- Features
 - Precise material arrangement
 - Composites containing dispersions with different shapes, sizes, materials, etc.
 - Material with anisotropy
 - Thermal conductivity dependence on temperature

T₀ FEM Mesh T₁

simulation

Thermal conductivity

Demonstration

Example of Application (1)

• Prediction of thermal conductivity of SiCw/AI composite

• Samples

Specimen	SiCw0.5-10%	SiCw0.5-20%	SiCw1.0-10%	SiCw1.0-20%		
Matrix	Al alloy A2024					
SiC whisker diameter (µm)	0.5	0.5	1.0	1.0		
SiC volume fraction	10%	20%	10%	20%		

Example of Application (1)

Thermal conductivity of SiCw/Al perpendicular (a) and parallel (b) to the whisker.

Example of Application (2)

• ZrO₂thermal barrier coating

Example of Application (2)

• Samples

Coating condition

	Plasma power (KW)		Spray distance (mm)		Substrate temp. (°C)		
C1	25.6		100		500		
C2	34.2		80		650		
C3	37.8		60		800		
Volume fraction of pores							
	Segment cracks	Branch cracks		Pores		Inter-splat cracks	
C1	1.85%	0.68 %		4.67 %		5.36%	
C2	2.25%	0.36%		4.07%		4.20%	
C3	3.78%	0.29 %		1.83 %		1.89%	

Example of Application (2)

Multi-scaled simulation

Comparison of the calculated and measured transverse thermal conductivity κ_T (W/mK)

	Step0	Step1	Step2	Step3	Step4	Exp.	Dev.
	(matrix)	(inter-splat crack)	(pore)	(branch crack)	(segment crack)		
C1	2.30	1.10	1.03	0.95	0.93	0.98	4.1%
C2	2.30	1.27	1.20	1.16	1.14	1.12	1.8%
C3	2.30	1.78	1.73	1.71	1.63	1.68	3.0%

Conclusion

- An Internet platform for designing composites with required thermophysical property with connection to materials database has been developed.
- The accuracy and reliability of the system has been proved by experiments.