Interactive experimentation and thermodynamic modeling

Weiping Gong^a, Marcelle Gaune-Escard^b, Zhanpeng Jin^a

 ^aState Key Lab of Powder Metallurgy, Central South University, Changsha, Hunan, P. R. China
 ^bEcole polytechnique, Mecanique Energetique, Technopole de Chateau-Gombert, Marseille, France.

> The CODATA conference, Beijing, China, 2006

1. Introduction

- 2. Structural behavior and thermodynamic properties of SrZrO₃
- 3. Thermodynamic modeling and experimentation of KBr-TbBr₃ system
- 4. Summaries

Introduction

- Phase diagram's functions: blueprints or roadmap for materials design, development, processing and basic understanding
 - visual representations of the state of a material: T, P, C

The correlation between thermodynamics and phase equilibrium J. W. Gibbs

- Modern development: modeling and computer technology
 - \rightarrow phase equilibrium computer calculation possibility
- Crucial thermodynamic modeling in binary system
- can be extrapolated to multi-component systems
- Question: Can we believe the results of modeling?

Two method to check the results of modeling

- Comparison between the calculated and measured data in literature is the most usually employed test (example one on SrZrO₃)
- the best way is to couple interactive experimentation and modeling (example two on KBr-TbBr₃)

• Two example were used to illustrate theses two methods

- Structure behavior and thermodynamic properties of SrZrO₃
- ♦ KBr-TbBr₃ Phase diagram and the decomposition of K₃TbBr₆

Example 1: structural behavior and thermodynamic properties of SrZrO₃

Two different reviews about the structure behavior of SrZrO₃ existed in literature

- One review: the room temperature structure of SrZrO₃ was pseudo-cubic, and this pseudo-cubic structure did not undergo any phase transformation upon heating
- Second review: the room temperature structure of SrZrO₃ was orthorhombic, and the orthorhombic perovskite SrZrO₃ will transform through higher symmetries during heating, eventually to ideal cubic

A series of thermodynamic data available in literature but great difference existed

- Different structure?
- Effect of impurities, minor departures from nominal stoichiometry, or changes in synthesis temperatures?

How to identify and resolve the inconsistency between various kinds of experimental data?

- Basic tool: thermodynamic modeling
- complementary experimentation

Thermodynamic modeling on SrZrO₃

Experimental data evaluation and thermodynamic modeling

- Thermodynamic data and structural information evaluation, thus two optimization procedure were adopted
 - > One optimization procedure: don't consider structure transformation Thermodynamic modeling of SrZrO₃:

 $G_{SrZrO3} = a_1 + b_1 \cdot T + c_1 \cdot T \cdot \ln T + d_1 \cdot T^2 + e_1 \cdot T^{-1}$ (1)

Second optimization procedure: consider structure transformation, Thermodynamic modeling of SrZrO₃:

similar equation as (1) to describe orthorhombic SrZrO₃

$${}^{p}G_{SrZrO3} = {}^{o}G_{SrZrO3} + \Delta H_{1} - T \cdot \Delta S_{1}$$
(2)
$${}^{t}G_{SrZrO3} = {}^{p}G_{SrZrO3} + \Delta H_{2} - T \cdot \Delta S_{2}$$
(3)
$${}^{c}G_{SrZrO3} = {}^{t}G_{SrZrO3} + \Delta H_{3} - T \cdot \Delta S_{3}$$
(4)

 ΔH_1 , ΔS_1 , ΔH_2 , ΔS_2 , ΔH_3 , ΔS_3 are the corresponding enthalpies and entropies of the transformations

Comparison between Experimental data and Thermodynamic calculation

Structure transformation and the corresponding enthalpy were detected by thermodynamic modeling

Experimentation on SrZrO₃

Prepare the samples

- ♦ Solid reaction to prepare SrZrO₃: SrCO₃ + ZrO₂
- ✤ Heat-treated at 1150, 1000, 850 °C
- Air quenched or furnace-cooled

XRD determination

XRD curve: sample quenched from 1150 °C and furnace-cooled to room temperature show the cubic and orthorhombic structure, respectively.

he observed patterns from SrZrO₃, showing the fundamental perovskite reflections. The

XRD curve results illustrate:

negative the pseudo-cubic SrZrO₃ in room temperature, confirm the structure transformation it's quite difficult to obtain the tetragonal SrZrO₃ due to the impurity, minor departures from nominal stoichiometry

- Thermodynamic modeling and experimentation benefit the structure behavior and thermodynamic properties investigation
- Thermodynamic modeling is based on the experimental information and can be used to identify and resolve the inconsistency between various kinds of experimental

Example 2: KBr-TbBr₃ system

Measured KBr-TbBr₃ phase diagram by L. Rycerz *et al*

- Two eutectic reactions
- Three compounds
 - > K_3 TbBr₃: a solid phase transition at 691 K, melt congruently at 983 K
 - > K_2 TbBr₅: a solid phase transition at 658 K, melt incongruently at 725 K

Measured thermodynamic data by L. Rycerz and M. Gaune-Escard

- Heat capacity of K₃TbBr₆:thermal effect at about 691 and 983K
- Enthalpy of mixing of liquid at 1113 K: the minimum located at about 0.3 KBr suggested the existence of TbBr₆-3

Thermodynamic modeling of KBr-TbBr₃ system

thermodynamic modeling of each phase

- Phase without composition range: G(7) function
 - Compounds without thermodynamic data: Neumann-Kopp rule

 $K_2 \text{TbBr}_5: A_1 + B_1 \cdot T + 2/3 \cdot G_{KBr}(s) + 1/3 \cdot G_{TbBr3}(s)$

 $\mathsf{KTb}_{2}\mathsf{Br}_{7}: \mathsf{A}_{2} + \mathsf{B}_{2} \cdot \mathcal{T} + 1/3 \cdot \mathsf{G}_{\mathsf{KBr}}(\mathsf{s}) + 2/3 \cdot \mathsf{G}_{\mathsf{TbBr3}}(\mathsf{s})$

- > K₃TbBr₆ with thermodynamic data and structural information two equations were used to describe two forms of K₃TbBr₆
 ^IG_{K3TbBr6} = a₁+b₁· T +c₁· T · ln T+d₁· T²+e₁· T⁻¹
 ^hG_{K3TbBr6} = a₂+b₂· T +c₂· T · ln T+d₂· T²+e₂· T⁻¹
- Thermodynamic description of liquid phase:
 - > associated solution (K⁺)_P (Br-, TbBr₆⁻³, TbBr₃)_Q was introduced to describe short-range order around K₃TbBr₆ composition

Thermodynamic calculation and comparison (Thermo-Calc software)

- Calculated phase diagram
 - Good agreement
 - > Exception:

decomposition of K₃TbBr₆ at 593 K

- The detected thermo effect in the heat capacity curve of K₃TbBr₆ at low temperature
 - Assessed to be structure change
 - Key experiments were conducted to check the existence temperature range of K₃TbBr₆

Key experiments to check the existence

temperature of K₃TbBr₆

- Prepare the samples
- DSC measurements between room temperature and 650
 K with a rate of 1 K/min
 - DSC heating and cooling curve:

thermal effect at about 593K

DSC heating and cooling traces on K₃TbBr₆ compound

- Based on the measured data, each phase in KBr-TbBr₃ system was thermodynamically modeling, KBr-TbBr₃ phase diagram and thermodynamic properties were preliminarily calculated.
- Guided by the calculated phase diagram and thermodynamic properties, key experiments were carried out, then model of the relate phases were modified to explain the literature and the present measured experimental data.
- The finally obtained thermodynamic properties and phase diagram were more reasonable

Summaries

- Two examples, i.e. structure behavior of SrZrO₃ and the phase diagram of KBr-TbBr₃ system were provided to illustrate the interactive experimentation and thermodynamic modeling
- Thermodynamic calculation is based on the experimental data and can provide important information for materials experiments, thus guide materials design, development, processing and materials understanding.

