Interplay of physicochemical and structural features in ionic compounds and melts

Marcelle Gaune-Escard^a, Leszek Rycerz^b, Slobodan Gadzuric^{a,c}

^aEcole Polytechnique, IUSTI CNRS 6595,
 5 rue Enrico Fermi, 13453 Marseille Cedex 13, France
 ^bWroclaw University of Technology, 50-370 Wroclaw, Poland
 ^cUniversity of Novi Sad, 21000 Novi Sad, Serbia

Marcelle.Gaune-Escard@polytech.univ-mrs.fr

Why lanthanide halides?

- Increasing technological importance
- Alloys production
- Lighting industry
- Nuclear waste processing
- Recycling of spent nuclear fuel
- Energy of future
- Electrodeposition of metals etc.

Outlines

- New experimental data on selected divalent and trivalent lanthanide halide mixtures with MX
- Topology of phase diagrams
- Modeling and processing by statistical techniques of large data sets where our original results have been incorporated

Experimental techniques

- High temperature calorimetry *Calvet* Microcalorimetry
- Differential Scanning Calorimetry (DSC)
- Electrical conductivity measurements
- Reflectance and Raman spectroscopy

M₃LnX₆ compounds (3:1 compounds)

- Compounds formed at higher temperatures in reaction between M₂LnX₅ and MX - (reconstructive phase transition)
- Compounds stable or metastable at low temperatures (non-reconstructive phase transition)

- Compounds formed at higher temperatures have only high-temperature crystal structure (cubic, elpasolite-type)
- Formation of compounds at higher temperatures (reconstructive phase transition) is followed by high molar enthalpy(~30-50 kJ mol⁻¹)

- Compounds stable or metastable at low temperatures have low-temperature (monoclinic, Cs₃BiCl₆ - type) and hightemperature (cubic, elpasolite-type) crystal structures
- Transition from low- to high-temperature modification (non-reconstructive phase transition) is followed by significantly lower molar enthalpy (6-10 kJ mol⁻¹)

Heat capacity of K₃NdCl₆

Heat capacity of K₃TbCl₆

Heat capacity of Cs₃TbCl₆

O 'Keeffe and Hyde «The Solid Electrolyte Transition and Melting in Salts»

- Simple, quantitative model of solid electrolyte - electrolyte properties are the result of existing of disordered phase with ionic conductivity
- Crystals with solid electrolyte phases pass, either gradually, or through a series of phase transitions, from normal ionic conductivity (0.1 Sm⁻¹) to liquidlike values while still solid.

O 'Keeffe and Hyde «The Solid Electrolyte Transition and Melting in Salts»

Superionic phase is a result

 of sublattice « melting », that is, atoms on a
 certain set of lattice positions become mobile,
 almost liquidlike, while the remaining atoms
 retain their normal lattice positions

Heat capacity and electrical conductivity of K₃NdCl₆

Heat capacity and electrical conductivity of K₃TbBr₆

- Characteristic dependence of heat capacity and electrical conductivity of solid phase of M₃LnX₆ compounds on temperature is a result of disordering of cationic sublattice formed by alkali metal cations
- Disordering of cationic sublattice in compounds that have only high-temperature modification takes place in a discontinuous way at compound formation temperature
- Disordering of cationic sublattice of compounds that have low- and high-temperature modifications takes place in a continuous way

Phase diagram topology

- Ionic potential (IP): IP = z/r for the systems with common anion
- $-IP_M/IP_{Ln}$ essential for classification
- Approach valid for trivalent Ln halides
- Divalent Ln halides less investigated approach gives only general trends
- Influence of common ion?
- EuBr₂-MBr compared with SrBr₂-MBr binaries

Ionic potential ratio and $CeBr_3$ -MBr phase diagrams (r_{Ce} =103 pm)

	r _M	IP _M /IP _{Ce}	Type of system	
	74	0.404		
Cebr ³ -Libl	74	0.464	Eutectic	
CeBr ₃ -NaBr	102	0.336	Eutectic	
CeBr ₃ -KBr	138	0.249	K ₃ CeBr ₆ , K ₂ CeBr ₅	
CeBr ₃ -RbBr	149	0.230	Rb ₃ CeBr ₆ , Rb ₂ CeBr ₅ , <i>RbCe₂Br₇</i> *	

* Incongruently melting compound (in italic)

SrBr₂-MBr and EuBr₂-MBr phase diagrams (r_{Sr} =140 pm; r_{Eu} =139 pm)

System	IP _M /IP _{Eu, Sr}	Type of system	References
SrBr ₂ -LiBr	0.946	LiSr ₂ Br ₅	Belyaev1962
SrBr ₂ -NaBr	0.686	Eutectic	Belyaev1962
SrBr ₂ -KBr	0.507	K ₂ SrBr ₄ , KSrBr ₃ , KSr ₂ Br ₅	Bukhalov1966
SrBr ₂ -RbBr	0.470	Rb ₂ SrBr ₄ , RbSrBr ₃ , RbSr ₂ Br ₅	Shurginov1969
SrBr ₂ -CsBr	0.412	CsSrBr ₃	Riccardi1970
EuBr ₂ -LiBr	0.939	EuSr ₂ Br ₅	This work
EuBr ₂ -NaBr	0.681	Eutectic	This work
EuBr ₂ -KBr	0.504	K ₂ EuBr ₄ , KEuBr ₃ , KEu ₂ Br ₅	This work
EuBr ₂ -RbBr	0.466	Rb ₂ EuBr ₄ , RbEuBr ₃ , RbEu ₂ Br ₅	This work
EuBr ₂ -CsBr	0.408	CsEuBr ₃	Unpublished
SrCl ₂ -LiCl	0.946	Eutectic	Belyaev1962
SrCl ₂ -NaCl	0.686	Eutectic	Tokarev1956
SrCl ₂ -KCl	0.507	K ₂ SrCl ₄ , KSr ₂ Cl ₅	Belyaev1962
SrCl ₂ -RbCl	0.470	RbSrCl ₃ , RbSr ₂ Cl ₅	Bukhalova1967
SrCl ₂ -CsCl	0.412	CsSrCl ₃	Bergman1965
EuCl ₂ -LiCl	0.939	Eutectic	Sun2002
EuCl ₂ -NaCl	0.681	Eutectic	Rycerz2004c
EuCl ₂ -KCl	0.504	K ₂ EuCl ₄ , KEu ₂ Cl ₅	Fink1980
EuCl ₂ -RbCl	0.466	RbEuCl ₃ , RbEu ₂ Cl ₅	Fink1980
EuCl ₂ -CsCl	0.408	CsEuCl ₃	Fink1980

- The complete experimental investigation of all properties for the whole lanthanide series of bromides, either in the (III) and (II) valence state would be of course of unrealistic duration.
- Need for such data was claimed in a number of modern technologies
- This context was the trigger of the second part of this work, with the ultimate goal of predictions being the global properties of these materials

Several informatic and statistical techniques play a significant role in data analysis and estimation of missing properties

- Chemometrics (data-based sub-discipline of chemistry)
- Molten salt systems are multivariate data collected by *Janz* can be transformed by multivariate analysis into dynamic dataset for analysis and intercorrelation of the properties

- Two techniques:
 - Principal Component Analysis (PCA) and
 Partial Least Squares (PLS)

In cooperation with Krishna Rajan

Combinatorial Sciences and Materials Informatics Collaboratory (CoSMIC), NSF International Materials Institute, Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA

Principal Component Analysis (PCA)

- Useful tool for data compression
- Data compressed into more compact space
- To identify patterns among the data and connections between variables

Partial Least Squares (PLS)

 Recent technique that generalizes and combines features from PCA

• Useful to make predictions

 In this work, two essential thermodynamic properties were predicted for the set of 14 lanthanide halides

PCA results

- Used data set derived from Janz, composed of seven variables for 1658 samples
- Results are PCs linear combination of 7 descriptors (Equivalent weight, melting point, temperature, equivalent conductivity, specific conductivity, density and viscosity)
- Data from the matrix are compressed and visualized in three dimensional space
- This helps to identify compound/property relationship in a dataset of molten salts

The 3 dimensional score plots for complete data

Two interesting projections

PLS results

- Data set for 19 different lanthanide halides obtained during our thermodynamic investigations was used for a multivariate analysis on ΔH^0_{form} and ΔG^0_{form} behavior
- Descriptors: equivalent weight, atomic number, electronegativity difference, cationic charge/radius ratio, melting temperature, ΔH^0_{form} and ΔG^0_{form}

- In other words, without any information on ΔH^0_{form} and ΔG^0_{form} in the test set, it was possible to predict these quantities using the prediction model for training set
- The large R² values 90.26% and 77.83% were obtained, indicating a high level of confidence for these predictions
- Experimental △H_{form} values -856 and -811 kJ/mol for CeBr₃ and GdBr₃ were obtained. They are in good agreement with those obtained using the predictive model (-834.49 and -831.07 kJ/mol respectively)

Results

Compound	Eq. weight	Atomic numbe r	ΔE	$Z_{\rm c}/r_{\rm c}$	T _{melt} (K)	Temp. range (K)
YbBr ₂	166	70	1.75	0.0172	1050	1100-1300
YbI ₂	213	70	1.49	0.0172	1053	1100-1300
EuI ₂	203	63	1.58	0.0153	853	900-1300
SmCl ₂	111	62	1.99	0.0142	1132	1150-1300
SmBr ₂	155	62	1.79	0.0142	973	1000-1300
SmI ₂	202	62	1.53	0.0142	793	900-1300
CeBr ₃	127	58	1.84	0.0261	995	1000-1300
PrBr ₃	127	59	1.83	0.0267	966	1000-1300
SmBr ₃	130	62	1.79	0.0273	937	1000-1300
EuBr ₃	131	63	1.84	0.0276	975	1000-1300
GdBr ₃	132	64	1.79	0.0278	1058	1100-1300
DyBr ₃	134	66	1.76	0.0285	1152	1180-1300
TmBr ₃	136	69	1.71	0.0285	1227	1240-1300
YbBr ₃	138	70	1.75	0.0298	1229	1240-1300

Conclusion

- Statistical approaches for identifying chemistryproperty relationships in a classic materials database (molten salts) have been provided
- Results show that the original molten salts database is a good partial template for a modern data-mining base to be used for virtual materials design and analysis
- To complete this transformation, it is necessary to include structural and thermodynamical data in this database or closely relate it to other databases through well-designed linkages