CODATA2006, beijing, China, Oct. 23-25, 2006

Integrating Data and Modeling In Materials Design

Ying CHEN¹, Yasunori KANETA¹, Shuichi IWATA²

¹ School of Engineering, The University of Tokyo, Japan

² Frontier Sciience, The University of Tokyo, Japan

Outline

- I. Introduction: materials design
- II. Approach
 - Data-driven approach: data mining
 - Modeling-driven approaches
 - Data/Modeling-driven approach
- III. Examples
 - Structural map: empirical, computational
 - Discovery of new H-storage materials
 - 1st principles calculation of phase diagram
- IV. Summary

I. Introduction: Materials Design

II. Approaches: Data-Driven Approach

Basic Idea

- Based on the comprehensive materials database
 to reveal regularities:
 - Formation of compound in a given binary system
 - Composition of stable compounds in "compound formers"
 - Structures of a given compound
 - Properties of a given compound
- Postulation

Elemental Property Parameters (EPPs) Expression

Property of Materials

• Tool: Materials Databases: Pauling File

II. Approaches: Data-Driven Approach

Mapping

• Purpose of Mapping

Proper Elemental Properties as Axes ↓ Substances in same/similar

structure/properties \rightarrow Groups

Twbo key points in mapping
 Characterization: To find optimal coordinates
 Classification: To define meaning of domainsb

Calculations based on various physical models provide:

- Complement to empirical data, provide new data;
- Further screening and prediction of hypothesis;
- Understanding of insight into the origin;
- Prediction of materials with required properties.

II. Approaches: Modeling-Driven Approach

Theoretical Approaches

- First Principles Electronic Structures (FLAPW, Wien)
- Car-Parrinello Molecular Dynamics (CPMD, VASP)
- Cluster Expansion Method (CEM)
- Cluster Variation Method (CVM)
- Phase Field Method (PPM)
- Classical Molecular Dynamics (MD)

II. Approaches: Data/Modeling-Driven Approach

III. Example-1 Structural Map

Strategy

Purpose: Regularity between Crystal structure & Element properties

III-1 Empirical Structure Map

Mendeleev Number

MN(A) vs. MN(B) Map for 1:1 Binary Compounds (RT)

Former (no 1:1)

P. Villars, Y. Chen et al. (2004)

III-1 AET distribution of Ternary compounds

Successfully separated ~2,500 intermetallic compounds with single AET

x: difference of Zunger's radiiy: difference of M-B elentronegativityz: sum of valence electrons number

Problems

- Microscopic mechanism?
- Uncompleted separation

Theoretical Modeling: Calculated map

III-1 Calculated Structural Map for AET Model, Method

Model Systems

AB intermetallic compound

- Nv < 3.5, s-s, s-p, p-d
- Martynov-Batsanov's electronegativity χ

 $\Delta\chi=\chi_{\text{A}}-\chi_{\text{B}}$

- → Atomic valence electronic energy level $\{\varepsilon_i\}$ $\Delta E = E_A - E_B$
- Pseudopotential radii's sum $R = r_s + r_p$

$$\rightarrow$$
 Bond length d

Calculation Approaches

Tight-binding approach $E_{tot} = E_{bond} + E_{rep}$ E_{bond} - attractive bond energy: $E_{bond} = \sum_{k}^{occ.} q_k \varepsilon_k$ $H = \sum_{i\alpha} \varepsilon_{i\alpha} |i\alpha\rangle\langle i\alpha| + \sum_{i\alpha\beta\beta} h_{i\alpha\beta\beta} |i\alpha\rangle\langle j\beta| + |j\beta\rangle\langle i\alpha|$ $h_{\alpha\beta\gamma}(d) = \eta_{\alpha\beta\gamma} \frac{h}{md^2}$

 $E_{\rm rep}$ - pairwise repulsive contribution

$$E_{rep} = \frac{1}{2N} \sum_{i,j} \Phi(R_{ij}) \qquad \Phi_{AA}(\mathbf{R}) = \mathbf{h}^{\lambda}(\mathbf{R})$$

Structural energy difference theorem

$$\Delta E_{tot} = (\Delta E_{bond})_{\Delta E_{erp}=0}$$

Y. Chen et al. (1996)

III-1 Calculated Structural Map for AET

 $\overline{\Delta \chi} (\Delta E)$

Investigate Origin of structural preference

Influence of ΔE : large $\Delta E \rightarrow \text{small } d \rightarrow \text{CN4}$ and CN6 $\rightarrow \text{CN4}$ requires very large ΔE , no in low Nv. Influence of λ : higher $\lambda \rightarrow$ higher CN: CN12, CN14

III. Example-2: Discovery of New H-Storage Materials

Starting point 32 Already known H-storage alloys (HAS)

結晶構造	水素貯蔵物質
CaCu₅	LaNi ₅ ,LaCo ₅ ,CaNi ₅ ,CeCo ₅ , CeNi ₅ ,GdCo ₅ ,GdNi ₅ ,NdCo ₅ , NdNi ₅ ,PrCo ₅ ,PrNi ₅ ,YNi ₅ ,YCo ₅ , ThCo ₅ ,YbNi ₅ ,SmNi ₅ ,SmCo ₅
CsCl	TiFe,TiNi,TiCo
Mg ₂ Cu	Mg₂Cu
Mg ₂ Ni	Mg₂Ni
MgCu ₂	ZrV ₂ ,ZrCo ₂ ,ZrMo ₂ ,ZrFe ₂ , ZrCr ₂ ,TiCr ₂ ,Ti ₂ Co
MgZn ₂	ZrMn ₂ , TiMn ₂
Ti ₂ Ni	Ti ₂ Ni

Surprising

linear relation for known HSAs Average valence electrons vs. Average electronegativity

M. Ono et al. (2005)

III-2. Discovery of New H-Storage Materials

linear relation for known HSAs \rightarrow Candidates of new HSAs

From small distance To the straight line

化学式	結晶構造	L	化学式	結晶構造	L
ErNi5	CaCu5,hP6,191	0.000	Nd5Sb3	Mn5Si3,hP16,193	0.001
ThNi5	CaCu5,hP6,191	0.000	Pr5Sb3	Mn5Si3,hP16,193	0.001
TmNi5	CaCu5,hP6,191	0.000	Sm5Sb3	Mn5Si3,hP16,193	0.001
TaFe2	MgZn2,hP12,194	0.000	Ce5Sb3	Mn5Si3,hP16,193	0.001
TaCo2	MgCu2,cF24,227	0.000	Yb5Sb3	Mn5Si3,hP16,193	0.001
La5Si3	Mn5Si3,hP16,193	0.000	HoFe5	CaCu5,hP6,191	0.001
NpFe2	MgCu2,cF24,227	0.001	Mn3Rh	Cu3Au,cP4,221	0.001
PuFe2	MgCu2,cF24,227	0.001	WFe2	MgZn2,hP12,194	0.001
UFe2	MgCu2,cF24,227	0.001	ScCo2	MgCu2,cF24,227	0.001
NdFe5	CaCu5,hP6,191	0.001	ErIn	CsCl,cP2,221	0.001
DyNi5	CaCu5,hP6,191	0.001	GdIn	CsCl,cP2,221	0.001
HoNi5	CaCu5,hP6,191	0.001	TmIn	CsCl,cP2,221	0.001
TbNi5	CaCu5,hP6,191	0.001	YIn	CsCl,cP2,221	0.001
HfMn2	MgZn2,hP12,194	0.001	LuNi5	CaCu5,hP6,191	0.001
CeBi	CsCl,cP2,221	0.001	Sc5Pb3	Mn5Si3,hP16,193	0.001
BaPo	NaCl,cF8,225	0.001	DyCo5	CaCu5,hP6,191	0.001
CeBi	NaCl,cF8,225	0.001	HoCo5	CaCu5,hP6,191	0.001
AmNi2	MgCu2,cF24,227	0.001	TbCo5	CaCu5,hP6,191	0.001
NpNi2	MgCu2,cF24,227	0.001	RuAl	CsCl,cP2,221	0.001
PuNi2	MgCu2,cF24,227	0.001	GdFe5	CaCu5,hP6,191	0.001
UNi2	MgZn2,hP12,194	0.001	ThFe5	CaCu5,hP6,191	0.001
NpCo2	MgCu2,cF24,227	0.001	ScFe2	MgCu2,cF24,227	0.001
PuCo2	MgCu2,cF24,227	0.001	ScFe2	MgZn2,hP12,194	0.001
UCo2	MgCu2,cF24,227	0.001			

Further screening by large unfilled volume

	結晶構造	隙間の体積 [ųAtom⁻¹]	直線との 距離
PuCo ₃	PuNi₃	4.36	0.0157
PuNi ₃	PuNi₃	4.30	0.0120
ThFe ₃	PuNi ₃	4.12	0.0120
HfV ₂	MgCu ₂	4.37	0.0037
NpFe ₂	MgCu ₂	4.41	0.0108
NpNi ₂	MgCu ₂	4.25	0.0076
PuFe ₂	MgCu ₂	4.20	0.0120
PuNi ₂	MgCu ₂	4.23	0.0105

III-2. Discovery of New H-Storage Materials

First Principles Calculation: $A_n B_m$, $A_n B_m H_q$

- Possible H sites, structures stability
- Interstitial volume, Storage capacity
- Electronic structure, binding
- Formation energy, Dissociation pressure
- → Candidates of New H-storage alloys !

III-3 Phase Equilibrium of Fe-Pt, Pd, Ni

Fe-Ni, Pd, Pt

- Systematic variation of phase stability
- L1₀: Mechanical, Magnetic properties

Objectives

• Phase stability: Reproducing, Origin?

Y. Chen, T. MOhri (2002-2005)

III. Example 3: First Principles Cal. of Phase Diagram

Atomic Information

III-3 Phase Equilibrium of Fe-Pt, Pd, Ni

Phase Diagram: L10-disorder, Phase Separation

Fe-Pt

Experiment 1600K

Experiment 1023K No L10 in exp. Phase diagram: Stable L10? Exp.(1962), MC(1996): 590K~775K Ohuma et al. ASM meeting 2004

IV. Summary

Interaction of Data & Modeling

Thank you very much !

Characterization

Element Properties (56 properties, ...182 data sets)

atomic number atomic weight density molar volume atomic energy level (Herman-Skillman) valence electron number atomic radius Van der Waals radius covalent radius first ionic radius second ionic radius third ionic radius metallic radius Zunger pseudo-potential radius Pauling electronegativity Alfred-Rochow electronegativity Martynov-Batsanov electronegativity absolute electronegativity first ionization energy second ionization energy third ionization energy molar electronic affinity

Young's modulus rigidity modulus bulk modulus Poisson's ratio mineral hardness **Brinell hardness** melting temperature Vickers hardness boiling temperature **Debye temperature** thermal conductivity molar heat capacity coefficient of linear thermal expansion atomization enthalpy fusion enthalpy vaporization enthalpy electrical resistance magnetic susceptibility reflectivity refractive index

. . .

Optimal coordinate for certain problem?

Element property vs. Atomic number

- \rightarrow 5 Patterns
- \rightarrow 5 Element property groups
- \rightarrow 1 representative for 1 group

Expression of compound property by element property

EP(tot) = EP(A) op EP(B)

Test separating capacity for NaCI-type and CsCI-type structures

31 Most common Atomic Environment Types (AETs)

