Nanoscale Simulation Code, Soft Matter Wiki, & MatDL

Materials Research Groups, Education, & Digital Libraries

20TH CODATA October 22-25 2006 Beijing, China

Professor Laura M. Bartolo
Materials Informatics Lab
Kent State University
lbartolo@kent.edu
Outline

- Background
 - Cyberinfrastructure
 - NSDL
- Introduction
 - Materials Digital Library
 - Metadata Capture & Soft Matter Wiki
- Methods
 - Participants
 - Software & Procedure
- Results
- Discussion
Vision of Cyberinfrastructure (CI)

- Blue Ribbon Advisory Panel, *Revolutionizing Science & Engineering Through Cyberinfrastructure*
- “The vision …”
 - ubiquitous, comprehensive digital environments
 - interactive and functionally complete in terms of people, data, information, tools, and instruments
 - unprecedented levels of computational, storage, and data transfer capacity
CI: Social & Technical Layers

- Virtual research and education communities
 - complementary needs and expertise

- Structured Information
 - domain & cross domain metadata, markup languages and vocabulary

- Trusted information
 - reuse across research and education

(Tim Berners-Lee, Scientific American, May 2001)
NSF, Cyberinfrastructure & Digital Libraries

NSF NSDL Program 2000

DLs & UG Earth Systems Education initiated FY99, continuing

DLI 2 Special Emphasis in UG Education FY 98-99

DLI 2 - NSF, et al., initiated in FY98, continuing

Digital Libraries Initiative (DLI 1) - NSF/NASA/ARPA, FY 94-97

NSDL Launch Fall 2002
What is NSDL?

- An NSF-funded $20 million/year program in Science, Technology, Engineering and Mathematics (STEM) education
- A digital library describing nearly two million carefully selected online STEM resources from well over 100 collections (at http://nsdl.org)
- A core integration team (Columbia, Cornell, UCAR) working with 9 “pathways” portals and over 200 NSF grantees
- A large community of researchers, librarians, content providers, developers, students, and teachers
NSDL Materials Digital Library Pathway

- As part of the National Science Digital Library
 - Implement an information infrastructure for materials community
 - Provide content and services to support the integration of research and education in materials
 - Disseminate information generated by government-funded efforts in materials
- A collaborative effort …
MatDL Repository

Goal: Facilitate interactions between research & education

Audience: Undergraduate and above

Supporting...

Virtual Labs
- Intro to Solid State Chemistry

NSF MS Initiatives
- Nanoscale Interdisciplinary Research Teams
- Materials Research Science & Engineering Centers
- International Materials Institutes

Teaching Resource Development
- MS Teaching Archive

Collaborative Code Development
- NIST FiPy
- UM

IOWA STATE UNIVERSITY
Offering:

- Tools, like the **MatDL Repository & Soft Matter Wiki**, to describe, manage, exchange, archive, and disseminate data from national & international gov’t funded materials teams & centers.
- **MatForge** for open access development of modeling and simulation codes.
- **Teaching Archive** for collaborative development of core undergrad MS teaching materials.
- Services and content for virtual labs in undergrad intro science courses.
MatDL Fedora-based Repository

- An architecture, toolkit, and implementation: middleware, not a vertical application
- Stores arbitrary internal and external digital objects, disseminations (transformations and combinations), relationships among objects
- Entirely SOAP/REST based, disseminations are URLs
- XML data store; RDBMS cache; RDF triplestore supports relationship queries
FiPy: A Finite Volume PDE Solver Using Python

http://www.ctcms.nist.gov/fipy

Overview

FiPy is an object oriented, partial differential equation (PDE) solver, written in Python, based on a standard finite volume approach. The framework has been developed in the Metallurgy Division and Center for Theoretical and Computational Materials Science (CTCMS), in the Materials Science and Engineering Laboratory (MSEL) at the National Institute of Standards and Technology (NIST).

The solution of coupled sets of PDEs is ubiquitous to the numerical simulation of science problems. Numerous PDE solvers exist, using a variety of languages and numerical approaches. Many are proprietary, expensive and difficult to customize. As a result, scientists spend considerable resources repeatedly developing limited tools for specific problems. Our approach, combining the finite volume method and Python, provides a tool that is extensible, powerful and freely available. A significant advantage to Python is the existing suite of tools for array calculations, sparse matrices and data rendering.

The FiPy framework includes terms for transient diffusion, convection and standard sources,
Teaching Archive

(Powell-Veryst/Krane-Purdue)

- Over 100 homework problems, handouts, courseware, readings, pedagogy; 30 authors
- Metadata: title, author(s), description, keywords, time/difficulty
- Version control: modify, keep old versions
- Collaborative development, corrections etc.
- Fourteen-member Editorial Board
Virtual Labs (Sadoway-MIT)

Services and content for …

- virtual labs in large undergraduate introductory science courses
- Alternative to traditional labs
- Beginning with MIT *Intro to Solid State Chemistry*
Soft Matter Wiki: An Expanded Example in the Materials Digital Library

- Development of
 - Vocabulary on assembly of nanosystems
 - Expert community-driven
 - Bottom-up approach
 - Wiki-based
Participants

Research Group CHE 557

Overview

Research in the Glotzer group focuses on understanding why and how ordered structures emerge in otherwise disordered soft materials and nanoscale systems — and how to design and control novel, functional structures from nanoscale building blocks using unconventional methods. Our tools for discovery include molecular, mesoscale, and multiscale computer simulations.

The new revolution in nano-science, engineering and technology is being driven by our ability to manipulate matter at the molecular and supramolecular level to create "designer" structures. The Glotzer group uses computer simulation to discover the fundamental principles of how nanoscale systems of molecular building blocks self-assemble, and to discover how to control the assembly process to engineer new materials. By mimicking biological assembly, we are exploring ways to nano-engineer materials that are self-assembling, self-sensing, self-healing, and self-regulating. Besides producing novel functionalities, heterogeneity and patterning at the nanoscale affects materials behavior during processing and application.

For example, in soft materials and complex fluids such as polymers and colloids, motion becomes highly cooperative on nanometer scales near the glass transition, resulting in dramatic changes to transport and rheology. The subtle structural features responsible for this unusual dynamics persist in the glass state, and may control physical aging, shear banding, and other complex material behavior. The group is developing theory and molecular simulation tools to understand these materials, and elucidate the nature of supercooled liquids, glasses and crystallization.
Software & Procedure

- Mediawiki software
 - Latex

- Vocabulary procedure
 - Research group: semi-automatic DC metadata capture
 - Course: supplemental course resource & part of course assignments
<dc:title>Brownian Dynamics simulation of a nanoparticle aggregating tethered nanosphere</dc:title>
<dc:creator>Chris Iacovella</dc:creator>
<dc:subject>Tethered Building Block</dc:subject>
<dc:subject>Lennard-Jones</dc:subject>
<dc:subject>Brownian Dynamics</dc:subject>
<dc:subject>NVT</dc:subject>
<dc:subject>FENE</dc:subject>
<dc:description>
Number of tethered building blocks = 800;
Number of beads = 7200;
Length of tether = 8;
Diameter of the nanopshere = 2.0;
System temperature = 0.2667;
System volume fraction = 0.25;
Integration scheme to use = Brownian Dynamics, NVT;
Number of Dimensions = 3;
United Atom Bead Spring with Lennard-Jones and FENE;
Phase: Hexagonally packed cylindrical micelles
</dc:description>
<dc:publisher>Glotzer group. Depts of Chemical Engineering, Materials Science & Engineering, Macromolecular Science, and Physics, University of Michigan</dc:publisher>
<dc:date>2006-9-19</dc:date>
Results

- Public view – launched September 2006
 - Number & range of terms
 - Currently 71 terms under 12 different categories
 - Approximately 70% of the terms have definitions
 - Format of entries
 - Vary from very brief to considerable detail
 - Adding context
 - Images, references
 - Related items in MatDL (e.g., preprints, images)
Interaction Potentials:
- The Lennard-Jones Potential
- Weeks-Chandler-Andersen Potential
- Hard Sphere Potential
- Dzugutov Potential
- Yukawa Potential
- Harmonic Spring
- FENE Spring

Simulation Methods:
- Brownian Dynamics Simulation (BD)

System Classifications:
- Polymer
- Block Copolymer
- Liquid Crystal
- Surfactant
- Colloid
- Tethered Building Block
Tethered Building Block

Tethered building blocks constitute a class of "shape amphiphiles" where microphase separation occurs due to the immobility between the tether and building block, similar to Block copolymers and Surfactants. Building blocks can vary greatly, from metallic nanoparticles to molecular nanomaterials such as POSS or Porphyrin. Temperature, solvent quality, concentration, tether placement, number of tethers, building block geometry and composition, are only a few of the many parameters that can have a large impact on the resulting structures and phase behavior.

Examples

- Tethered Spheres
 - Bucky Balls

Record on MATDL Repository
Icosahedral packing of polymer-tethered nanospheres and stabilization of the Gyroid Phase

Author(s)
Iacovella, Christopher R.
Keys, Aaron S.
Horsch, Mark A.
Glotzer, Sharon C.

Description
We present results of molecular simulations that predict the phases formed by the self-assembly of model nanospheres functionalized with a single polymer "tether". Microphase separation of the immiscible tethers and nanospheres induces the formation of the double gyroid, perforated lamella, and crystalline bilayer phases. Confinement effects promote the formation of icosahedral arrangements of nanoparticles that help to stabilize the gyroid and perforated lamella phases. We also present a new metric for determining the local arrangement of particles in liquid and solid configurations.

Keyword(s)
Brownian Dynamics
stabilization
FENE
Lennard-Jones
icosahedral
nanospheres
crystalline bilayer

Publisher

Date
Wednesday, May 17, 2006

Language

Rights

School, Department or Centre
Glotzer group. Depts of Chemical Engineering, Materials Science & Engineering, Macromolecular Science, and Physics
<table>
<thead>
<tr>
<th>Attached Files</th>
<th>Description</th>
<th>MIMEType</th>
</tr>
</thead>
<tbody>
<tr>
<td>n2006TNSGyroid.pdf</td>
<td>n2006TNSGyroid.pdf</td>
<td>application/pdf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Links</th>
<th>Description</th>
</tr>
</thead>
</table>
Icosahedral packing of polymer-tethered nanospheres and stabilization of the gyroid phase

Christopher R. Iacovella1, Aaron S. Keys1, Mark A. Horsch1, and Sharon C. Glotzer1,2,*

1Department of Chemical Engineering and 2Department of Materials Science & Engineering

University of Michigan, Ann Arbor, Michigan 48109-2136

May 17, 2006

*Corresponding author: sglotzer@umich.edu

We present results of molecular simulations that predict the phases formed by the self-
<table>
<thead>
<tr>
<th>Title</th>
<th>Brownian Dynamics simulation of a nanoparticle-aggregating tethered nanosphere: cylindrical micelles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creator(s)</td>
<td>Iaccarino, Christopher R.</td>
</tr>
<tr>
<td>Research Fields, Courses and Disciplines</td>
<td></td>
</tr>
<tr>
<td>Keyword(s)</td>
<td>Tethered Building Block</td>
</tr>
<tr>
<td></td>
<td>Lennard-Jones</td>
</tr>
<tr>
<td></td>
<td>Brownian Dynamics</td>
</tr>
<tr>
<td></td>
<td>NVT</td>
</tr>
<tr>
<td></td>
<td>FENE</td>
</tr>
<tr>
<td></td>
<td>Hexagonally packed cylindrical micelles</td>
</tr>
<tr>
<td>Description</td>
<td>Number of tethered building blocks = 800; Number of beads = 7200; Length of tether = 8; Diameter of the nanosphere = 2.0; System temperature = 0.2667; System volume fraction = 0.25; Integration scheme to use = Brownian Dynamics, NVT; Number of Dimensions = 3; United Atom Bead Spring with Lennard-Jones and FENE; Phase: Hexagonally packed cylindrical micelles</td>
</tr>
<tr>
<td>Publisher</td>
<td>Glotzer group, Depts of Chemical Engineering, Materials Science & Engineering, Macromolecular Science, and Physics, University of Michigan</td>
</tr>
<tr>
<td>Contributor</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Tuesday, September 19, 2006</td>
</tr>
<tr>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td></td>
</tr>
<tr>
<td>Relation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>N</td>
<td>4.557679</td>
</tr>
<tr>
<td>C</td>
<td>4.362575</td>
</tr>
<tr>
<td>C</td>
<td>4.652141</td>
</tr>
<tr>
<td>C</td>
<td>4.440438</td>
</tr>
<tr>
<td>C</td>
<td>5.198133</td>
</tr>
<tr>
<td>C</td>
<td>6.170948</td>
</tr>
<tr>
<td>C</td>
<td>6.655709</td>
</tr>
<tr>
<td>C</td>
<td>6.829666</td>
</tr>
<tr>
<td>C</td>
<td>6.152726</td>
</tr>
<tr>
<td>N</td>
<td>-5.335641</td>
</tr>
<tr>
<td>C</td>
<td>-4.141345</td>
</tr>
<tr>
<td>C</td>
<td>-4.836942</td>
</tr>
<tr>
<td>C</td>
<td>-5.361344</td>
</tr>
<tr>
<td>C</td>
<td>-4.795474</td>
</tr>
<tr>
<td>C</td>
<td>-5.007473</td>
</tr>
<tr>
<td>C</td>
<td>-4.319065</td>
</tr>
<tr>
<td>C</td>
<td>-3.856049</td>
</tr>
<tr>
<td>C</td>
<td>-2.952446</td>
</tr>
<tr>
<td>N</td>
<td>11.047960</td>
</tr>
<tr>
<td>C</td>
<td>10.771382</td>
</tr>
<tr>
<td>C</td>
<td>11.662510</td>
</tr>
<tr>
<td>C</td>
<td>12.357243</td>
</tr>
<tr>
<td>C</td>
<td>11.997816</td>
</tr>
<tr>
<td>C</td>
<td>11.064384</td>
</tr>
<tr>
<td>C</td>
<td>10.048621</td>
</tr>
<tr>
<td>C</td>
<td>10.721190</td>
</tr>
<tr>
<td>C</td>
<td>11.303519</td>
</tr>
<tr>
<td>N</td>
<td>-9.066666</td>
</tr>
<tr>
<td>C</td>
<td>-9.600149</td>
</tr>
<tr>
<td>C</td>
<td>-9.259403</td>
</tr>
<tr>
<td>C</td>
<td>-9.766072</td>
</tr>
<tr>
<td>C</td>
<td>-10.551077</td>
</tr>
<tr>
<td>C</td>
<td>-11.138006</td>
</tr>
<tr>
<td>C</td>
<td>-12.086658</td>
</tr>
</tbody>
</table>
Course view

- Overview, Lectures, Assignments, Books of interest
- Wiki assignments to be reviewed
- Reviewed assignments are submitted to the public view
Class: Che557

Overview
This class is designed to provide an understanding of the strategies, methods, capabilities, and limitations of computer simulation as it pertains to modeling and simulation of soft materials at the nanoscale. The course consists of lectures and hands-on interactive simulation labs using research codes based upon the GbSoftLab Simulation Package. The class will utilize various simulation techniques including Molecular Dynamics, Brownian Dynamics, Collision Dynamics, GASENT, Particle Simulation, Monte Carlo, and Time-Dependent Ginzburg Landau.

Course Syllabus
- Suggested reading and author list
- Download GbSoftLab

Lectures
1. Lecture 1a
2. Lecture 1b
3. Lecture 2a
4. Lecture 2b

Additional material
1. Introduction to Soft Materials
2. Force Field Methods

Assignments
1. Assignment 1
2. Assignment 2

Books of interest
- The Structure and Rheology of Complex Fluids
- Intermolecular and Surface Forces
- Computer Simulation of Liquids
- Understanding molecular simulation: from algorithms to applications
- Molecular Modelling: Principles and Applications
Surfactant Shear

Contents
1. Article
2. Summary
3. Nonequilibrium Monte Carlo simulations
4. Molecular Dynamics simulations

Article

G. A. Yi, A. Z. Panagiotopoulou

“Molecular modeling of shear-induced alignment of cylindrical micelles”

Computer Physics Communications, 169 (2005), 252-266

Summary

The shear-induced self-assembly of surfactant into long-ranged cylindrical micelles is studied using nonequilibrium Monte Carlo (NEMC) and Molecular Dynamics (MD) simulations. The effects of shear flow are incorporated into the MC simulations via an additional potential term and modeled in the MD simulations by sliding the boundaries in opposite directions. By analyzing the differences between simulation results obtained from the two methods, the authors show that while the NEMC method is insufficiently reliable, the MD method gives more convincing results for the shear-driven phenomenon.

Nonequilibrium Monte Carlo simulations

For equilibrium canonical Monte Carlo Simulation, a trial configuration is accepted with a probability

\[P_{\text{acc}} = \min\{1, \exp\left(-\frac{\Delta U_0}{k_B T}\right)\} \]

where \(\Delta U_0 \) is the difference in potential energy between the current state and the trial one. In the presence of shear flow, the acceptance criterion is modified by incorporating a shear-induced potential term into the Boltzmann factor. As proposed by Xu et al \cite{7}, this criterion is then given by

\[P_{\text{acc}} = \min\{1, \exp\left(-\left(\Delta U_0 - \Gamma \sum_{i=1}^{N} y_i \Delta x_i\right)/k_B T\right)\} \]

where the shear rate is controlled by varying \(\Gamma \); \(y_i \) is the average position of bead \(i \) on the velocity gradient axis and \(\Delta x_i \) is its displacement in the shear direction.

A coarse-grained model of liquid n-butane is chosen at \(T = 300K \) and \(\rho = 0.6 g/cm^3 \). Three modes of trial move are considered: isotropic translations, rotations about the center of mass and regrowth/cutting with the relative frequency of 0.82 : 0.179 : 0.001. The boundary conditions are chosen such that the walls parallel to the shear flow are impenetrable while the others are periodic. The simulation results show that i) for monolayer film, the cylindrical micelles perfectly align with the flow direction and ii) for thicker films, the cylinders tilt with respect to the direction of shear. The tilt angle decreases with the decreasing thickness of the film. Although the results seem to be qualitatively reasonable and the inclusion of shear-induced term into the acceptance equation is straightforward, several drawbacks remain. First, the shear-induced potential part is essentially nonconservative due to its dependence on the average y-coordinate of individual particles. Second, as pointed out by Evans et al \cite{8}, the canonical ensemble that this MC scheme samples actually represents a local equilibrium instead of the true nonequilibrium state. Third, the boundary condition effects cannot be reduced with or without Lees-Edwards periodic boundary conditions (LEPBCs) \cite{10}. While the former case results in abnormal bond length for molecules located near the center of the simulation box, the latter produces a non-linear velocity profile.

Molecular Dynamics simulations

In the MD simulations, a H4T4 surfactant is modeled as a bead chain linked together by finitely extensible nonlinear elastic (FENE) springs. All beads interact with each other via a repulsive Weeks-Chandler-Andersen (WCA) potential. Tether-tether interaction also includes an attractive part to favor microphase separation. All MD simulations are conducted using Nosé-Hoover thermostat and the LAMPS for shear flow. For monolayer film, the cylindrical micelles are perpendicular to the shear direction, a “fan-out” behavior at certain shear rates...
DISCUSSION

- Beginning with soft matter simulation
 - Expand to: electronic materials, glasses, polymer thin films
- Brings repository into wiki presentation
- Metadata feeds terms into wiki and visa versa
- Will include experimentalist perspective & data
Thank you & Questions?

http://matdl.org
http://matdl.org/matdlwiki

The NSDL Materials Digital Library Pathway is supported by the National Science Foundation DUE-0532831. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.